NEYTERKOB CORONAE ON VENUS; J. Raitala and K. Kauhanen, Department of Astronomy,
University of Oulu, SF-90570 Oulu, Finland

Neylekob Corona is located as a triple formation close to two major ridge belts and has lineament systems of its own. It consists of two adjoining main subcircular rings and a third smaller nearby ring with volcanic plains inside every structure. The eastern main ring may be the younger one because of its more continuous bulge shape and unfractured volcanic plains (with some grooved hills). The bottom of the western part shows a variety of volcanic features as domes, cones, pits, lava channels and eruption vents as well as tectonic lineaments. Late-stage volcanism probably covered its smooth northwestern corner. The smallest northeastern one of the three Neyterkob Coronae consists of concentric ridges and a faint ring bulge with three minor plains with spots of dark lavas inside.

Remnants of an outer ring bulge can be found to the east and to the west of the corona. On the eastern side of the corona there is an additional concentric pattern of lineaments some of which turn out to be fractures or narrow grabens. A few lava flows have their beginning at these fractures. On the western side of the corona concentric ridges border remnants of the second ring bulge. To the south they gradually lose their continuosity and are found as a component of a massive ridge net. Ridges to the north and west of the corona may be part of ridge belts, too.

The age relations of different coronae are unambiguous because of few overlapping structures. The latest main volcanic event is the formation of the easternmost of the two main Neyterkob rings. The smallest northeastern corona cuts the concentric lineaments of the outermost ring of eastern Neyterkob Corona and is younger than that ring.

Concentric ridges near the ring bulge are mainly related to the formation of the bulge. While ridges inside the Neyterkob ring bulges are few there are more ridges outside. Concentric ridges can be formed by radial pressure, by a collapse of the bulge or by external compression against it. At a few locations there are short concentric ridge belts consisting of parallel ridges. Narrow braided ridges can be found on the SE edge of the eastern corona. The most intriguing features are the small-scale ridge nets the most important of them being found just south of the corona. Ridges are short, wrinkled and show patterns parallel to the ring bulge and local ridge belts. To the north of the corona, an intersecting pattern can be found.

Radial ridges and lineaments around Neyterkob Corona are partly connected to ridge belts running against the area. Some of their structures are caused by the corona formation but the main belts may precede it. A few radial systems distinctly relate to the coronae. Inside the western second ring bulge there is a system of massive radial wrinkle ridges. To the north they are more straight and on the southwestern side they form a net with concentric ridges. The system merges with adjacent NW-SE ridge belt and SW-NE running straight fractures. It is mostly restricted inside the second bulge which connects this system with the corona formation.

Major northwestern and southern radial ridges are related to ridge belts. To the east and north wrinkle ridges are more widely distributed but they still follow the main direction of ridge belts and merge with them. The corona volcanism is just on the course of the NW-SE ridge belt which thus can be regarded a zone of weakness extending to the corona.

Tension is indicated by some of the subparallel structures of the western corona ring bulge. On the eastern side of the corona there are similar en echelon faults along the outer border of the bulge. Extensional fractures are found also on the bottom of the western corona and on the ring bulges. There are some tensional lineaments also inside the western ring structure. To the southwest long lineaments connect Razia Patera to Neyterkob Corona. On the southeastern side they are parallel to the older pattern of lineaments and a ridge belt. Such lineaments extend also in the north from Neyterkob Corona to the Pandrosos Dorsa. Lineaments are narrow and mostly classified as fractures. They are slightly arcuate and parallel to each other. The southern Pandrosos Dorsa indicates some relationship between ridge belts and volcanism: late volcanism on the bottom of the smallest corona may be related to its young fractures.

A plausible explanation of the corona formation is the diapir- or plume-evoked crustal doming and a later collapse and volcanic rework of the interiors. The explanation also involves plume-generated radial pressures resulting in observed structures together with processes during the dome relaxation and crustal flexure. If the bulge is formed by an ascending symmetric diapir, it should also be symmetric. This may give us some hints about the evolution of the Neyterkob Corona which was formed by several incidents. The Neyterkob Corona is a result of tectonic responses of the lithosphere to the ascending mantle plume and its double structure can be explained by at least two events. The nonsymmetric ring bulge of the western part of the corona is possibly due to several smaller events. The formation of the more circular eastern ring must have happened afterwards. And the diminishing final phase may have been main extrusions within the northeasternmost small structure.
TECTONIC STRUCTURES OF NEYTERKOB CORONAE ON VENUS (MAGELLAN F-MIDR.50N205)