THE ORIGIN OF VENUSIAN CHANNELS: MODELLING OF THERMAL EROSION
BY LAVA; D.B.J. Bussey, S-A. Sørensen, J.E. Guest, University of London Observatory, University
College London, London, NW7 2QS, U.K.

Magellan imagery has revealed that channels, apparently volcanic in origin, are abundant on
the surface of Venus [1]. There has been much debate about the origin of these channels. Are they
the result of erosional (either thermal or mechanical) or constructional processes?

A common characteristic of the simple sinuous channels (described by Baker as 'canali' [1]) is
that they show evidence of erosion near their source and then become purely constructional, forming
levees and in some cases roofing over completely [2].

One method of showing that thermal erosion is capable of producing the type of channels
seen is to use computer modelling incorporating the physical conditions on Venus and the physical
characteristics of the different types of lava that may have been erupted.

It is possible to calculate, relatively easily, two channel parameters. The first is the erosion rate,
which combined with eruption duration, gives depth. The second is for how long after leaving the
source the erupted lava will continue to be capable of thermal erosion before constructional
processes dominate. Making assumptions about the rheology of the lava (e.g. assume it behaves as a
Bingham plastic) along with the slope angle yields a flow velocity and therefore a distance over which
thermal erosion will take place.

Due to the resolution (both vertical and horizontal) of the Magellan altimetric data, the
distance from the source that the channel is erosional can be much more accurately measured than
the depth of the channel. This will remain the case until stereo imagery becomes available for large
areas of the planet.

Until a solid crust is formed on top of the lava, heat is lost by radiation and convection to the
atmosphere. At the same time heat is transferred to the underlying rock by conduction. This heats up
the rock until its solidus temperature is reached. At this point latent heat must be supplied before the
rock actually enters the liquid phase, whereupon the melted rock is amalgamated into the lava and
removed. Loss of heat at the top of the lava by radiation and the bottom of the lava by conduction
leads to heat flow within the lava by both convection and conduction. Of the two however, convection
has a much shorter time scale and is therefore much more effective.

Once a crust has formed heat loss by convection stops and heat loss by radiation is much
reduced due to the crust being at a lower temperature than the liquid lava. Lava then loses heat by
conduction into the crust which gradually thickens. As the lava loses internal energy, by melting the
ground rock, it is itself cooled. Eventually the lava will be cooled to such an extent that it will no longer
have enough internal energy to continue to melt the rock. At this point the channel becomes purely
constructional in nature.

As mentioned previously there are two different quantities to be modelled. The erosion rate
and the distance from the vent that the lava retains its erosional capability. In the first approximation
this can be accomplished using a simple one dimensional model of temperature distribution as a
function of time at various distances from the vent. The model is solved by using the principle of finite
differences. Preliminary findings for erosion rate near the source for a komatiite lava flowing over a
basalt ground rock are shown in figures 1 & 2. Figure 1 represents Venusian flow whilst figure 2 is for
Earth. The graphs show vertical distance eroded against time. The present model predicts an erosion
rate of approximately 25 cm a day on Venus and 16 cm a day on Earth. The value for Earth is
significantly lower than that predicted by Huppert [3].
ORIGIN OF VENUSIAN CHANNELS: D.B.J. Bussey et al.

Even with this lower rate the preliminary quantitative results presented here indicate that even for short eruption durations thermal erosion can be an important process, given the right conditions, in the production of channels.

REFERENCES: