Lunar granite 12033,576 is a subsample of the "large" (-1 g) felsite 12033,507 which was identified from a collection of 4-10 mm particles from the 12033 soil sampled from the north rim of Head Crater in the eastern part of Oceanus Procellarum. Discordant ages of ~3.6, ~0.8, ~3.9 and ~2.2 Ga for this lunar granite were obtained, respectively, by the K-Ca, 39Ar-40Ar and U-Pb zircon methods in previous studies and by the Rb-Sr method in this study. Assuming the granite crystallized ~3.9 Ga ago (zircon age), and was shocked by meteoritic impacts at 0.8 Ga ago (39Ar-40Ar age), the intermediate apparent ages by the Rb-Sr and K-Ca methods can be interpreted as reset by diffusion of the parent and daughter nuclides. The Rb-Sr age is less resistant to resetting than the K-Ca age, but more resistant than the 39Ar-40Ar age.

Rb-Sr mineral isochron for granite 12033,576: Rb and Sr isotopic data for this subsample of large felsite 12033,507 [1] were obtained with procedures described in [2]. Two bulk samples, WR1 and WR2, and two mineral separates, G and B, handpicked from the whole rock sample crushed to <149 µm were analysed. G is a gray feldspar-rich sample and B is a dark sample containing brownish glasses of possible shock origin [1] as well as mafic minerals. K-Ca isotopic data for these samples yield a well-defined isochron age of 3.62±0.11 Ga [3]. Rb-Sr isotopic results are reported here for the same samples, and do not define a good isochron (Fig. 1). The best-fit line for the disturbed Rb-Sr system yields a young and imprecise age of 2.2±0.53 Ga (2σ) and a high initial 87Sr/86Sr of 0.774±0.017 (2σ) using the York program [4]. Both K-Ca and Rb-Sr ages are younger than the upper concordia intersection age of 3.898±0.010 Ga obtained from the U-Pb data for zircons [5]. All these ages are considerably older than the 39Ar-40Ar age of 800±15 Ma, interpreted as the age of Copernicus, determined from an aliquot of the bulk sample [6]. The high initial 87Sr/86Sr and 40Ca/44Ca values for the granite indicate that both the Rb-Sr and K-Ca isochrons could have been partially reset by the Copernicus impact. If so, the crystallization age for this granite could be significantly older than the K-Ca model age of ~4.2 Ga.

Diffusion model for resetting internal isochrons: Discordant ages for the granite are summarized in a K-Ca isochron diagram (Fig. 2). Assuming that the granite crystallized at ~3.9 Ga and underwent shock metamorphism at 800 Ma, fractional exchanges (loss or gain), F(Sr) and F(Ca), of 87Sr and 40Ca, respectively, by diffusion in partially reset isotopic systems can be defined as $F=\left(R_{3.9}-R_t\right)/\left(R_{3.9}-R_{0.8}\right)$ where R is 87Sr/86Sr or 40Ca/44Ca for points on isochrons representing ages of 3.9 Ga, 0.8 Ga and the observed age t at a given parent/daughter ratio. Thus defined, F is given by the relative degree of isochron rotation, and can be calculated by a lever rule [7]. The calculated F(Sr) and F(Ca) for mineral separates B
and G are 0.58–0.60 and 0.18–0.16, respectively. These values can be used to calculate the diffusion parameter \(\alpha = (Dt/a^2)^{1/2} \) for Sr and Ca, using procedures analogous to those developed by [8] for the diffusion of Ar. The results for \(\alpha(\text{Ar}) \), \(\alpha(\text{Sr}) \) and \(\alpha(\text{Ca}) \) are >0.8, -0.2 and -0.05, respectively, as presented in Fig. 3. The three solid lines represent the anticorrelation between diffusion time and diffusion coefficient for the three isotopic systems: K-Ar, Rb-Sr and K-Ca. Petrographic evidence suggests that the granite had experienced a shock-related thermal event at \(-700^\circ\text{C} \) [1]. The \(D/a^2 \) value for the K-Ar system at this temperature is determined from an Arrhenius diagram of temperature release \(^{39}\text{Ar} \) data to be \(-10^{-6} \) sec\(^{-1} \). This temperature and \(D/a^2 \) value correspond to an Ar diffusion time of several days needed to totally reset the K-Ar chronometer. The Rb-Sr and K-Ca isotopic data indicate that diffusion in the Rb-Sr and K-Ca system is, respectively, \(-10x\) and \(-400x\) slower than in the K-Ar system. These differences are in good agreement with the relative values of experimentally determined diffusion coefficients for Sr and Ca in granitic melts recommended by [9]. At \(700^\circ\text{C} \), it would have required months to totally reset the Rb-Sr system in the granite, and years to totally reset the K-Ca system.

Crystallization age and petrogenetic implications: Ages and initial \(^{40}\text{Ca}/^{44}\text{Ca} \) ratios of lunar granites 14321 and 12033 [3,10] are represented by error parallelograms in Fig. 4. Dotted lines represent \(^{40}\text{K}/^{44}\text{Ca} \) growth curves. For a simple two-stage model, the \(^{40}\text{K}/^{44}\text{Ca} \) ratio in the source of granite 14321, which has concordant ages [10,11], was calculated to be \(-0.0018 \), similar to values found for quartz monzodiorites [12-14], suggesting large K/Ca fractionations (\(F_{\text{M}}/F_{\text{S}} \approx 16x \)) during granite formation. Large enrichments of K/Ca can be produced by silicate liquid immiscibility (SLI) processes [e.g. 15,16]. The \(^{40}\text{K}/^{44}\text{Ca} \) ratio calculated for the source of granite 12033 formed at the K-Ca isochron age of 3.6 Ga is so high that it either must have been derived from an already granitic source, or have assimilated a large amount (\(-40% \)) of ancient granitic materials prior to its crystallization. Assuming a similarly large \(F_{\text{M}}/F_{\text{S}} \approx 16x \) for this granite as for 14321, the 12033 granite could have been derived from a low K/Ca source similar to that for granite 14321 \(-4.1 \) Ga ago in a plutonic environment perhaps associated with the parental magma of some Mg-suite rocks.