EFFECT OF PLANETESIMAL IMPACTS ON MANTLE DIFFERENTIATION:
Y. Toda and Y. Abe, Department of Earth and Planetary Physics, University of Tokyo,
Tokyo 113, Japan

During the period of heavy bombardment [1], mantle differentiation would be induced
by two processes. One is the extraction of melt formed at the ascending region of mantle
convection due to adiabatic decompression (endogenic process). The other is the differentiation
induced by impact melting (exogenic process). We estimate the volume production rate of melt
by each process to clarify quantitative importance of the exogenic processes on the early Earth.

To estimate the volume production rate of melt at the ascending region, we use a simple
two dimension model of steady state convection heated from within. It is based on the thermal
boundary layer theory [2, 3] with fixed flow pattern. Thickness and density of melt (crust) are
both dependent upon mantle temperature [4]. We obtain the volume production rate of melt, \(\dot{V}_c \)
(\(\dot{V}_c = h u_s / L \); \(h \), \(u_s \), and \(L \) are the thickness of melt, surface velocity, and width of the cell,
respectively) as a function of mantle potential temperature (Figure 1). We use \(10^{21} \) Pas case as
a representative case of the endogenic process.

We have to distinguish two effects of impact on mantle differentiation: 1) impact-induced
melting, and 2) impact brecciation. The former may enhance mantle differentiation, but the
latter homogenizes the near surface layers. We estimate both the volume production rate of
melt produced by impact and the volume production rate of ejecta. To estimate melt volume
we use a simple shock wave model based on the planar impact approximation [5]. We assume
that the particle velocity is constant at the near field (isobaric core) and that it decays outside
the isobaric core with distance. Using Rankine-Hugoniot equations with the first law of
thermodynamics, we calculate three dimensional distribution of residual temperature rise after
release of shock pressure for given impact velocity, impactor size and initial temperature
profile of the Earth (mantle potential temperature). Figure 2 shows the example (impactor
velocity, size, and the mantle potential temperature are 15km/s, \(10^6 \) Earth mass (about 80km in
radius) and 1500 K, respectively). The contour line expresses the isothermal line, and nearly
hemispherical region is the total melt region. The melt volume almost linearly depends on
impact velocity and impactor size, but it is almost independent of geotherm. The volume
production rate of melt, \(\dot{V}_e \) is given by \(\dot{V}_e = \phi_f / S_p \), where \(\phi_f \) is impact flux and \(S_p \) is the total
surface area of the planet. We estimate the impact flux assuming that the size distribution of
planetesimals follows a power law approximation [7]. In the similar manner, we define the
production rate of ejecta, \(\dot{V}_e = \phi_f / S_p \), where \(\phi_f \) is volume of ejected material by single
impact, which is estimated by Maxwell’s Z-model [8, 9].

The dominant mode of mantle differentiation is obtained by comparing \(\dot{V}_c \) and/or \(\dot{V}_e \)
with \(\dot{V}_c \) as a function of mass accretion rate, \(\phi_f \), and the maximum planetesimal mass, \(M_{\text{max}} \)
(Figure 3). To be conservative, we define the gray zone by the parameter range where two of
\(\dot{V}_c \), \(\dot{V}_e \), or \(\dot{V}_c \) are on the same order. The exogenic process is dominant when mass accretion rate
is large (\(> 10^{13} \sim 10^{14} \) kg/yr). Impact-induced melting dominates differentiation, when both mass
accretion rate and the maximum planetesimal mass are large (\(> 10^{5} \) Earth mass).

Although it is very difficult to estimate the mass accretion rate, it can be obtained from
cumulative lunar crater density [10]. The time evolution of mass accretion rate estimated by
previous workers [10, 11, 12] are also shown as three arrows. As shown in Figure 3, the
impact-induced melting dominates differentiation in quantity before 4.2Ga. Before 4.0Ga, the
exogenic process has comparable effect with the endogenic process. Though we have not yet
found any traces of old crust before 3.96Ga on the Earth [13], it is possible to find differentiation
products on the other terrestrial planets (Mars, the Moon etc.). Moreover, it is interesting to
Effect of Planetesimal Impacts on Mantle Differentiation: Y. Toda & Y. Abe

note that the period while the impact-induced melting surpasses the endogenic melting overlaps the period while no crustal material is preserved (Figure 4).

In this study, we neglect melt production during isostatic rebound during cooling of magma pond. This process probably increases the volume of melt. On the other hand, total melt produced by impact may not contribute differentiation, because it might solidify without chemical differentiation. The most important problem is the difference between exogenic and endogenic processes in 'quality.' Namely, we have to investigate the difference in chemical signature of differentiation products.

Reference