1 Introduction

Both icy and rocky bodies show a transition in shape with size. Large bodies have oblate ellipsoidal shapes, whereas small bodies have irregular shapes. The transition occurs at around 200 km radius for icy bodies and between 300–500 km radius for rocky bodies, and is accompanied by changes in roughness and in the relation between maximum topographic height and radius [Slyuta and Voropaev, 1997; Thomas, 1989; Croft, 1992].

The oblate ellipsoidal shapes of the large bodies are controlled by self-gravity, with their maximum topographic relief inversely proportional to their size, as predicted by Johnson and McGetchin, 1973. This topographic relief is supported by material strength.

Maximum topographic relief on the small bodies is proportional to their size. This relationship is not consistent with support by material strength. What mechanisms control the shapes of these smaller bodies?

The existence of giant craters on many asteroids, low asteroidal densities, and low asteroidal rotation rates suggest that asteroids larger than a few hundred metres are porous, nearly strengthless “rubble piles” composed of monolithic subunits with sizes on the order of tens of metres [Asphaug, 1999; Ostro et al., 1999].

A “rubble pile” asteroid may be nearly strengthless, but it can still support topography via frictional forces, just like a heap of sand supports itself. If this mechanism does control asteroidal shapes, then no slopes greater than 30°, a typical angle of repose, should be seen on asteroids. Asteroid flyby imaging has revealed only a few slopes steeper than 30°. A small number of steep slopes can be explained away as occurring on the boundaries between monolithic subunits and do not invalidate this mechanism.

Observed asteroidal shapes are not angle of repose-limited, they contain regions of shallower slope. What would an angle of repose-limited shape look like? Such a shape would represent an end-member for possible asteroidal shapes, being as far removed from a sphere as possible. As such it is interesting to try to find such a shape and investigate its properties.

2 Searching for an angle of repose-limited shape

All shapes discussed in this abstract are assumed to be axisymmetric and homogeneous. Real asteroids are not axisymmetric and are probably not homogeneous, but these assumptions provide a suitably simple starting point. Initially the shapes are non-rotating; this assumption is relaxed later.

My approach to finding an angle of repose-limited shape is straightforward. I generate lots of shapes then calculate their surface slopes, hoping that some shapes will approach being angle of repose-limited. An alternative method, computationally depositing sand onto a sphere and allowing it to flow when it exceeds the angle of repose, is awaiting study.

I have studied three classes of shapes; boxy, elliptical, and irregular shapes, as shown in Figure 1.

Figure 1: Example boxy, elliptical, and irregular shapes.

Boxy and elliptical shapes are simple to generate. The irregular shapes are generated by a “random walk” technique. The walk is not completely random, but is restricted to moving in only one direction parallel to the symmetry axis, and monotonically outwards from the axis and then monotonically back inwards to the axis. Consequently, the irregular shapes do not cover the complete range of possible shapes, even with infinitely many runs of the “random walk”. For example, a large crater on the rotation pole cannot be reproduced by this method. These restrictions were introduced to simplify my computer programming and may be removed in future work.

Slopes are not calculated using the (scalar) dynamic height approach [Thomas et al., 1994 and references therein] preferred by Thomas and co-workers in their series of observed asteroidal shape papers. Instead, local gravity vectors are used. Both methods should give identical results.

3 Results

I tried to find shapes with mean slopes as large as possible and maximum slopes not exceeding 30°. For the irregular shapes, a few slopes were allowed to exceed 30°, as has been seen on real asteroids. When calculating mean slopes in this case, the few slopes greater than 30° were neglected. The irregular shapes proved surprisingly unsuccessful. Of 200 irregular shapes, only 5 had mean slopes greater than 15°, and none of those had mean slopes greater than 18°. One of the five most successful shapes is shown in Figure 2.
The elliptical shapes were more successful. A shape with axial ratio \(\sim 0.3 \) has a mean slope \(\sim 20^\circ \) and is shown in Figure 3.

The boxy shapes were even worse than the irregular shapes, with none having maximum slopes less than \(30^\circ \) and mean slopes greater than \(15^\circ \).

An elliptical shape is completely defined by one parameter, its axial ratio, and hence its maximum and mean slopes are both simply functions of this single parameter. It should be possible to find analytical expressions for both these slopes in terms of this parameter. At the time of writing, I have not attempted this. If analytical expressions could be found and extended to the case of rotating and/or triaxial ellipsoids then simple shapes which are close to angle of repose-limited can be studied in detail and compared to observed asteroidal shapes.

4 Rotation

For a range of physically realistic rotation rates and densities, there was always an elliptical shape with a mean slope \(\sim 20^\circ \) and maximum slope less than \(30^\circ \). As rotation rate increased, the axial ratio of the “best” ellipse changed but did not change monotonically. Again, an analytical description would aid insight here.

The “best” irregular shapes continued to have mean slopes \(\sim 15^\circ \) as the effects of rotation were increased. Unlike the elliptical shapes, “good” irregular shapes tended to stay “good” as the effects of rotation were increased.

Rotating boxy shapes were as uninteresting as non-rotating boxy shapes.

5 Conclusions

There are sound reasons for wondering what an angle of repose-limited asteroidal shape might look like. 200 axisymmetric shapes, assumed to be homogeneous, generated by a restricted random walk approach yielded only a handful of examples with mean slopes greater than \(15^\circ \) when shapes with slopes significantly exceeding \(30^\circ \) is a typical angle of repose. An axisymmetric elliptical shape, assumed to be homogeneous, with axial ratio \(\sim 0.3 \) had a mean slope of \(20^\circ \) and no slopes exceeding \(30^\circ \). When physically realistic rotational effects were included, similar results were obtained for elliptical and irregular shapes, though with a different elliptical shape being closest to angle of repose-limited.

6 Acknowledgements

Jay Melosh

7 References

Thomas, P. C., and 7 co-workers, The Shape of Gaspra, Icarus, 107, 23–26