Thursday, March 15, 2001
POSTER SESSION II
7:00–9:30 p.m. UHCL

Meteoroids

Shuvalov V. V.
Atmospheric Entry of Tunguska-like Meteoroids: 2D Numerical Model [#1124]
2D numerical model with radiation and ablation is used to study atmospheric entry of Tunguska-like meteoroids.

Shuvalov V. V. Artemieva N. A.
Long-Term Disturbances of Ionosphere Caused by Tunguska-like Impacts [#1123]
2D and 3D numerical models are used to study the long time evolution of large scale ionospheric disturbances induced by Tunguska-like impacts.

Khazins V. M.
Numerical Simulation of the Meteoroid Wake [#1266]
A quasi-two-dimensional model for estimation of the wake dynamic parameters along a reasonably large segment of the meteoroid trajectory is proposed. Numerical simulation is demonstrated with an example of the Tunguska-like event.

Kosarev I. B. Nemtchinov I. V.
Meteoroid Impacts Detection from an Orbiter Around the Airless Cosmic Body [#1544]
The efficiency of the initial kinetic energy transformation into radiation is sufficient for detection of impacts onto the lunar surface. Lunar orbiter may detect impacts of meteoroids with the size about 20 times smaller than observations from the Earth.

Azovskiy A. N. Shuvalov V. V.
The Influence of Meteoroid Shape on the Movement of Destroyed Meteoroid [#1052]
When meteoroids penetrate into dense layers of atmosphere, in most cases they are broken on separated fragments, which form crater fields. And the shape of fragments can influence on their divergence very strongly.

Kozlov E. A. Teplov V. A. Kusina M. S. Grokhovsky V. I.
Spherical Explosive Experiments with Iron Meteorites [#1057]
The first results are presented with respect to the investigation of the spheres turned from the iron meteorites Chinga and Sikhote-Alin’ after their spherical explosive compression of different intensity.

Bland P. A. Cintala M. J. Hörz F. Cressey G.
Survivability of Meteorite Projectiles — Results from Impact Experiments [#1764]
An experimental impact study investigating the fragmentation of various projectiles, including meteorite, at speeds up to 1.8 km/s. The results have implications for the survivability of meteorites impacting planetary and asteroidal surfaces.