ON THE ORIGIN OF TITANIUM-49 EXCESSES IN PRESOLAR SILICON CARBIDE GRAINS OF TYPE X.

P. Hoppe and A. Besmehn, Max-Planck-Institute for Chemistry, Cosmochemistry Department, P.O. Box 3060, D-55020 Mainz, Germany (hoppe@mpch-mainz.mpg.de and abesmehn@mpch-mainz.mpg.de).

Introduction: Primitive meteorites contain small amounts of refractory dust grains that formed in stellar winds or in the ejecta of stellar explosions [1, 2]. Among the presolar minerals studied to date most isotopic information is available for silicon carbide (SiC). Of particular importance are the so-called X grains which make up about 1% of the meteoritic SiC grains. These grains are believed to have formed in the ejecta of Type II supernova (SN) explosions [3-5]. They are characterized by high 12C/13C (most grains; up to 80x solar), high 28Si/29,30Si (up to 5x solar), and low 14N/15N (down to 0.05x solar) ratios. Other features of X grains are large excesses in 26Mg and, in some grains, 44Ti, and 49Ti. While the excesses in 26Mg and 44Ca can be attributed to the radioactive decay of now-extinct 26Al ($t_{1/2} \approx 700000$ y) and 44Ti ($t_{1/2} = 60$ y), the origin of the 49Ti excesses is less clear. Enhanced 49Ti/48Ti ratios may be the result of n-capture reactions and/or may be due to the decay of radioactive 49V ($t_{1/2} = 330$ d) [3, 4]. Evidence for incorporation of live 49V would constrain the time scale of grain formation in the ejecta of Type II SN explosions to several months.

In order to get more information on the origin of 49Ti excesses and on the possible presence of live 49V at the time of grain formation in SiC X grains we have measured the Ti-isotopic compositions together with V in 48 X grains from the Murchison CM2 chondrite.

Experimental: The X grains have been identified by low-mass resolution ion imaging with the Cameca IMS 3f ion microprobe at the Max-Planck-Institute for Chemistry at Mainz. Subsequently, 46Ti, 48Ti, 49Ti, and 51V (together with Si and Ca isotopes) were measured on 44 X grains with the IMS 3f in a peak-jumping mode at high mass resolution conditions, using a ≈ 100 pA primary O$^-$ ion beam. In addition, four X grains were studied with the new generation Cameca NanoSIMS 50 ion microprobe which was recently installed in our laboratory. Prior to the Ti-V-isotopic analyses these grains had been studied for Si- and Ca-isotopic compositions and abundance of 48Ti with high lateral resolution (≈ 150 nm under O$^-$ bombardment; Fig. 1), [6]. All Ti isotopes together with 28Si, 51V, and 52Cr were measured in a peak-jumping mode, using a defocussed ($\approx 1-2$ µm) primary O$^-$ ion beam of ≈ 5 pA. Chromium-52 was included in the measurement cycle to allow for correction of contributions from 50Cr to 54Ti.

Results: Most of the X grains studied with the IMS3f have Ti-isotopic compositions compatible with solar. However, because the primary beam diameter of 5-10 µm is distinctly larger than the size of the X grains (typically ≈ 1 µm), significant contributions from nearby Ti-bearing grains can not be excluded and we will focus the discussion only on those six grains that show a $> 2 \sigma$ anomaly in the 49Ti/28Ti ratio. These grains have comparatively high Ti concentrations from 400 ppm to > 1wt%. The X grains studied with the NanoSIMS have lower Ti concentrations of ≈ 100 ppm. Even in spite of the partial grain consumption during the prior Si- and Ca-isotopic analyses, the high transmission of the NanoSIMS did still allow to obtain sufficiently precise Ti-isotopic data.

Figure 1. SEM image and 28Si$^+$ and 48Ti$^+$ ion images of X grain M6-50-2 measured with the NanoSIMS. The field of view in the ion images is 6x6 µm2.

The ten X grains considered here have Si-isotopic compositions compatible with previously published values [3-5, 7]. Of the X grains studied with the IMS 3f three grains have lower than solar 49Ti/48Ti and three have higher than solar 49Ti/48Ti ratios. On the other hand, all grains studied with the NanoSIMS exhibit excesses in 49Ti. The 49Ti/48Ti ratios of these ten X grains correlate with the 51V/48Ti ratio which varies by more than two orders of magnitude (Fig. 2). All X grains have 46Ti/48Ti and 47Ti/48Ti ratios compatible with solar (within the typical errors of 10-20%). The 50Ti/48Ti ratio of X grain M6-50-2 is clearly higher than solar (δ^{50}Ti/48Ti = 870±190‰); however, since the 50Cr interference accounts for more than 60% of the...
ion signal measured at mass 50 (assuming solar 50Cr/52Cr) this ratio is somehow uncertain.

Discussion: In order to explore whether 49V is needed to explain the 49Ti/48Ti ratios of X grains we will compare our data with the predictions from a SN mixing model. It is based on the 15 M\textsubscript{\odot} Type II SN model of solar metallicity of [8] which has been successfully used in the past to explain many isotopic features of SN grains [4, 5, 9]. The mixing considers matter from the SiS (only inner part because otherwise large 46Ti excesses are expected, contrary to the results for the X grains in this study), HeC, and HeN zones (Fig. 3) in proportions that can reproduce the C-, Al-, and Si-isotopic ratios of X grains reasonably well.

The best match between the data for the X grains with high 49Ti/48Ti ratios and the model predictions is achieved if 49V is considered and if there is no V/Ti fractionation (Fig. 2). Without Ti/V fractionation the predicted 49Ti/48Ti ratio does not depend on the time of grain formation. In order to explain the V/Ti ratios of the X grains with low 49Ti/48Ti ratios a Ti/V fractionation of a factor of 100 must have been occurred during grain condensation. In this case, the 49Ti/48Ti ratio depends not only on how the Ti/V fractionation is achieved (cf. two different scenarios in Fig. 2) but also on the time of grain formation. For t \leq t_{\text{1/2}(49V)} relative contributions of 49V will be only marginal and the 49Ti/48Ti ratios are expected to be lower than those in the unfractonated mix (Fig. 2), compatible with our X grain data. For t >> t_{\text{1/2}(49V)} on the other hand, 49V has decayed to 49Ti and essentially the same range of 49Ti/48Ti ratios as in the unfractonated mix is expected. Our data for X grains thus point to the presence of live 49V at the time of grain formation, i.e., the X grains must have formed within several months after SN explosion. This is consistent with the time-scale for dust formation in SN ejecta inferred from astronomical observations [10].

The conclusion regarding time-scale for grain formation relies heavily on the existence of X grains with low 49Ti/48Ti and V/Ti ratios. The 49Ti/48Ti anomalies in X grains with lower than solar 49Ti/48Ti differ by less than 3\sigma from solar and it can not be strictly ruled out that their Ti is isotopically normal. In this case the Ti might not be intrinsic to the X grains but might be from nearby Ti-bearing grains with solar isotopic composition. A confirmation of the presence of X grains with low 49Ti/48Ti and V/Ti ratios is clearly needed. Use of the NanoSIMS will be crucial in this respect as it allows to largely exclude contamination from the analyses and as its high sensitivity will allow to obtain sufficiently precise Ti-isotopic data.

Acknowledgements: We thank J. Huth for his help with the SEM analyses.