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Introduction 

In an abstract presented last year [1] it was shown that there is a gravitational pulse in space, which varies in the 
Solar System between 1.5 Hz and 1.8 Hz. This frequency causes the  planets and their moons to vibrate in such a way as 
to create resonant or quantum orbits. It was also shown that the planets are all upheld in stable orbits caused by the 
gravitational radiation emitted by both the Sun and Jupiter. In fact, without the stabilizing influence of at least one Jupiter 
sized planet, stable planetary systems are probably not possible. This paper looks at eleven extra-solar planetary systems 
[2], two with three Jupiter sized planets, and the remainder with two. Present techniques that study the “wobble” of stars 
caused by planets orbiting around them can only detect very large Jupiter sized planets, even though small Earth type 
planets may also exist. Although the data being used is limited to a few Jupiter sized planets, it nevertheless gives useful 
results that verify that the theory applied previously on our own solar system [1] is applicable to other star systems. 

In addition, the gravitational frequency of space inside very large planets is shown to increase with their mass, 
and become constant at about 1.95 Hz for planets greater than five times the mass of Jupiter. This data together with 
paradigms concerning the specific energy of space then allows the value of Hubble’s constant to be verified in a new 
way. 

Planetary Orbits 
Since planets move in stable orbits around their star, the velocity of a planet creates a Doppler shift in the 

gravitational frequency of space vg which  locally “transforms away” the gravitational field. The planets own 
gravitational frequency ∆v is given by this Doppler shift which is:  ∆v  = vg up / c                (1) 
where the speed of light c = 2.998x108 m/s, and up = mean velocity of planet around the star.  

Large Jupiter type planets have densities that allow them to vibrate elastically and emit more radiation than they 
receive from their star, thereby augmenting the star’s gravitational radiation. This allows them to exercise significant 
control over the whole planetary system, especially the orbits of smaller outer planets beyond star quantum orbit 12. 

Table 1 shows data for eleven extra-solar planetary systems each containing two or three known planets, where 
Mass = Jupiter mass of planet, r = mean radius of orbit, T = period, and up = mean velocity. Also given is the ratio 
between the planet’s ∆v and that of the main “Jupiter” planet’s gravitational frequency ∆vj and the resonances nj this 
creates. The planets must also be in resonant or quantized orbits with respect to their star because only then can they 
exchange gravitational energy with the star without losses. These quantum positions ns are also shown in Table 1, and are 
computed from Eq. 2, which is derived in [1], plus the ∆v from Eq. 1, which is:  ∆v = ns c / (8 π2 r)    (2) 

Calculations are started by guessing the quantum number of the innermost planet with respect to the star (ns) 
then computing ∆v from Eq. 2, and vg from Eq. 1. If vg is between 1.6 Hz and 2.0 Hz, then ns is probably correct, and the 
ratio between its frequency and the “Jupiter” planet frequency can then be guessed. When a whole quantum number nj 
has been assigned to each planet, and they all have gravitational frequencies vg between 1.6 Hz and 2.0 Hz, then the other 
planet or planets quantum number with respect to the star ns is computed from Eq. 2. If these numbers are very close to 
whole numbers then the quantum numbers for that star system, with respect to both the star and the “Jupiter” planet are 
probably correct. It can be seen from Table 1 that both sets of quantum numbers have been found for all the planets with 
the exception of Gliese 876 c, its innermost planet. For this planet its star quantum number should have been ns = 1, but 
was computed to be (1x2)½, which suggests that it is locked into the ns = 2 vibration mode of its companion. 

Gravitational Frequency and Mass of Jupiter Sized Planets 
If the gravitational frequency of space vg at each of these extra-solar planets is plotted against its Jupiter mass,  

then the resulting figure, not included, clearly shows that there is a direct relationship between vg and the mass of a 
Jupiter sized planet, with the frequency reaching a maximum of  1.95 ± 0.02 Hz when the planet’s mass is greater than 
five Jupiter masses. This result implies that all stars must also have a gravitational frequency vg of about 1.95 Hz.  

Hydrodynamic Analogy of Space 
Some scientists believe that our universe consists mainly of virtual particles, creating what is called the quantum 

vacuum or the zero-point-field. These virtual particles are thought to interact with charged fundamental particles in real 
matter creating both gravitational and electromagnetic vibrations at specific resonant frequencies. In some ways the 
expanding universe is similar to the flow from a collapsed dam. The specific energy of the flow E is equal to the sum of 
its potential or pressure energy PE, which drives the expansion of the universe, and its kinetic energy KE. Eventually, the 
flow stabilizes near the point of minimum specific energy, where flow conditions are critical, just like a real fluid when 
there is no downstream control or like a trained neural network. Our visible galaxies are just in the subcritical part of the 
flow, further out the critical section is reached where the PE = 2/3Emin and the KE = 1/3Emin. 

In fluid mechanics, for a “wide” channel and constant discharge, this critical section is where E is a minimum. 
Here the PE = hc = 2/3Emin the KE = uc

2/2g = 1/3Emin and the Froude number F=1 where F = Inertial force / Gravity force, 
that is F2 = u2/gh = 2KE/PE, where h = depth of water, u = velocity of water, and g = gravitational acceleration. 
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 Specific Energy and Density of Space 

The total average specific energy density of space consists of two parts, a potential, pressure or vacuum density 
ρv and a kinetic or matter density ρm. Because space is almost flat they add up to the critical density ρc and on average 
deep space consists of ρv = 0.70 ρc and ρm = 0.30 ρc. The dark energy of ρv originates from unknown virtual particles 
forming the zero-point or quantum field known as quintessence. The energy of ρm includes 15% ordinary visible and dark 
matter, and 85% unknown exotic dark matter. Hence, ρc  = ρv + ρm where ρc   E, ρv   h, ρm   u2/2g, and F2   2ρm / ρv. 

Hubble’s Constant and the Gravitational Frequency in Deep Space 
The critical density  ρc = 3H2/(8πG), and G = ξvg

2/ρv where H = Hubble’s constant, G = Newton’s gravitational 
constant, and  ξ is a dimensionless electrostatic/gravitational constant defined by Grubert [1] and equal to 1.75x10-37. 
Since  ρc  = ρv + ρm we obtain Eq. 3:    ρm /ρv = [ (0.682 x 1036 x H2/vg

2 ) - 1 ]     (3) 
Inside stars vg=1.95±0.02Hz and ρm = 0, since all their specific energy is potential, hence from Eq. 3, H=2.36±0.02x10-18 
s -1or 72.8±0.7 (km/s)/Mpc, which agrees with recent measurements. In deep space ρm /ρv = 3/7, F = ( 6/7)½  = 0.93, which 
is just subcritical, and Eq. 3 gives vg=1.63 Hz. At the critical section where F=1, the gravitational frequency is 1.59 Hz. 
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Table 1. Extra-solar Planetary Resonances. 
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