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Abstract. We have developed a method for autonomous
construction of thematic maps of Martian terrain from digital
topography. These maps show spatial distribution of topo-
graphical features and are generated by a computer algorithm
that classifies pixels on the basis of topographical information
they carry. We apply our technique to generate a thematic map
of Tisia Valles region on Mars.

Introduction. The morphology of Martian terrain is of
great interest because it helps to identify physical processes
responsible for the observable topography. Traditionally, the
descriptive method, applied to imagery data, has been used to
study and categorize Martian terrain (1). We are developing
a complementary approach, wherein a thematic map of topo-
graphical features is automatically constructed by clustering
computer algorithm applied to perform an unsupervised clas-
sification of pixels in a digital elevation model (DEM) of a
given Martian terrain. The input data is a DEM constructed
from the Mars Orbiter Laser Altimeter (MOLA) data, and the
output is the thematic map, wherein each pixel is assigned a
label associated with a particular topographical feature.

To illustrate our technique we have constructed a the-
matic map of topographical features for Tisia Valles region
(see Fig. 1). We use DEM with resolution of 1/128 degree
in both latitude and longitude. The terrain shown in Fig. 1 is
covered by a DEM with 385 rows (south to north) and 424
columns (west to east).

Methods. Digital topography, as represented by a DEM,
is a digitized elevation field, where space is discretized into a 2-
D grid and each cell (which we call a pixel) carries an elevation
value. We modify a DEM, so, in addition to elevation, each
pixel carries five other "bands" of information derived from
the elevation field. Thus, we construct a "multiband DEM" in
which each pixel carries topographical information in a form
of a list of six numbers. Our approach is analogous to a
concept of multispectral image where each pixel also carries a
list of numbers describing intensity at number of wavelengths.
The analogy to multispectral images extends to our method
of analysis, we classify all pixels in a multiband DEM into
a number of classes using clustering algorithm to produce
thematic map of topography, whereas similar classification
of pixels in multispectral image produces thematic map of
composition.

The six bands of topographical information are: 1) ele-
vation, 2) elevation difference between flooded and original
terrain, 3) slope in an original terrain, 4) slope in a flooded
terrain, 5) contributing area in original terrain, 6) contributing
area in flooded terrain. The original elevation field is "flooded"
in order to make it fully drainable (2). On Mars the presence
of craters and other natural pits makes flooded and original
terrain different. The difference between the two terrains is
the second band in multiband DEM. Pixels with high values
in the second band are likely to be located inside craters. The

Figure 1: Viking image of Tisia Valles. The center of this
image is located at 46.13E, 11.83S. The terrain shown is ap-
proximately 215 km west to east and 192 km south to north.
This is a typical Noachian Martian surface, heavily cratered
and showing presence of channels.

third and fourth information bands are slopes in original and
flooded terrain, respectively. The slope of a given pixel is the
slope between its center and the center of neighboring pixel
in the direction of steepest descent. Pixels that are flooded
have zero slope. Pixels at the boundary, where slope cannot
be determined have values of -1. The fifth and sixth infor-
mation bands are contributing areas in original and flooded
terrain, respectively. Contributing area is the number of pix-
els (including itself) that drains through a given pixel. Pixels
with high values of contributing areas are likely locations of
streams and rivers. Pixels with contributing area = 1 are
ridges, nothing drains through them, except themselves. Note
that information in bands 2, 5, and 6 is not local, but instead
depends on geographical context of a pixel.

Clustering a large number of pixels is computationally ex-
pensive. Our approach sampled the data first to generate a
smaller dataset as follows. The multiband DEM was divided
into 10X10=100 equal sized cells. From each cell we sampled
with replacement 400 pixels. The result is a dataset of 40,000
pixels. We cluster this dataset using probabilistic clustering
algorithm that follows the Expectation Maximization (EM)
technique (3). It groups vectors into classes by modeling each
class through a probability density function. Each vector in the
dataset has a probability of class membership and is assigned
to the class with highest posterior probability. Euclidean met-
ric in space of topography descriptors is used to measure the
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Inter-crater plains located at medium-high elevations.

Inter-crater plains located at high elevations.

Inter-crater plains located at low elevations.

Inter-crater plains located at medium-low elevations.
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Terrain inside craters located quite deep below rim, but 
not as deep as class 4.

Terrain inside craters located deepest below crater rim. 

Terrain inside crater, located just below the crater rim.

Terrain inside crater, intermediate between classes 3 
and 10.
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Terrain inside shallow, partially buried craters.

Terrain located at valley ridges and outside crater 
ridges.

Terrain located near the crater rim, but outside the 
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drainage systems - channels.
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Figure 2: Thematic map of topography for Tisia Valles region. The actual map is on the left with different topographical features
(classes) indicated by different colors. The summary of classification is given in the table on the right.

“closeness” between pixels. The number of classes is calcu-
lated using cross-validation (4). This algorithm classified all
40,000 pixels into 12 separable and exhaustive classes. Re-
maining 121,626 pixels were classified into those 12 classes
using a decision tree learning algorithm. The algorithm used
the initial dataset to construct decision tree. The decision tree
classifier was used to classify remaining pixels into the same
12 classes representing different topographical features.

Results. Fig. 2 shows generated thematic topographic map
of Tisia Valles region. Pixel class membership is indicated by
color. The table on the right of Fig. 2 summarizes the result
of our classification. The first column gives class number,
the second column indicates the color used to denote pixels
belonging to a given class on thematic map to the left. The
third column gives the percentage of pixels in the class, the
fourth column gives our topographical interpretation given to
each class. The last column is the name of the larger group. We
have organized 12 classes into four larger groups: inter-crater
planes, regions inside the craters, ridges, and channels.

Some subtle differences between otherwise similar ter-
rain are picked up by our classification. Five classes repre-
sent crater interiors; they discriminate between different crater
depths. Four classes represent inter-crater plains, they differ by
actual elevation. Two classes represent ridges, they discrimi-
nate between different slopes. Finally, a single class represents
channels.

Conclusions. We have used Martian digital elevation data
to construct a mulitiband DEM that carries enriched topograph-
ical information. Some data bands in such a DEM carry infor-
mation integrated from a region around a pixel. This makes a
pixel "aware" of its geographical context and makes possible
using a mulitiband DEM to construct a useful thematic map.
We have demonstrated that an autonomous, unsupervised clus-

tering algorithm can classify pixels in mulitiband DEM into
classes that corresponds to topographic features. Thus, we
have developed a method that produces, in automated fashion,
thematic map of Martian topography.

Such map contains "smart" information and it may sup-
port geomorphic investigations better than a visual rendering
of a DEM. Because all information bearing pixels are labeled
by their class membership, comparative statistical studies are
possible. Distributions of particular variable (such as, for
example, a slope) for different topographical features can be
compared. A given terrain can be succinctly described by a list
of, say, 12 numbers, each number giving a percentage of pix-
els in corresponding topographical class. For example, Tisia
Valles terrain can be succinctly described by the following list:
(32, 4.9, 4.4, 2.8, 21, 2.5, 2.7, 13.2, 0.4, 3.4, 7.5, 5.2) This vec-
tor lists percentage of pixels in classes 1 to 12 as given in a
table in Fig. 2. If pixels in other terrains are classified into
the same 12 classes, a analogous vector can be constructed for
each terrain. This opens possibility for classification of ter-
rains (not pixels) based on quantitatively expressed similarity
between their overall topographies.
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