Manifestation of gas-dust streams from double stars on lunar seismicity.

Oleg B. Khavroshkin , Vladislav V. Tsyplakov, Schmidt United Institute of Physics of the Earth, RAS Moscow, Russia, e-mail: khavole@uipe-ras.scgis.ru

Information content of the Nakamura's Catalog of moonquakes is very rich: from solar-earth tides to clustering among the meteoroid streams [1,2]. The histograms from meteoroid impacts seismic data revealed the seismic wave responses of the Moon to solar oscillations and the action on the lunar surface by dust-gas plasma of meteoroid streams [3]. The time series of seismic events were generated as follows: on an axis of ordinates the peak amplitudes of events in standard units, on an abscissa seismogram durations of the same moonquakes and subsequent time intervals between them were put aside [4]. Spectrum of the series of meteoroid streams disclosed time picks on orbital periods some planets and their satellites and solar oscillations [4,5]. The research of peculiarities of histogram envelopes [3] and comparative common analysis solar bursts data and mass meteoroid distribution are confirmed [3,4] and revealed Forbush's effect for gas-dust plasma [6]. Hidden astrophysical periodicities of lunar seismicity were obtained early from an analysis of time series [7] which were similarity to series [4]. The pat of results of [7] is presented in Table.

Table

Characteristic of binary stars systems and picked out periods of lunar seismicity.

N		Name	Half period	Masses of		distans	Gravitation
Tabl	lunar	of system	/period day	component		parsec	radiation.
1	periods, day			solar unit.			Gd/s
4	6.7	V380 Cyg	6.21	13.3	7.6	4168	10^{21}
		CV Vel	T=6.89	6.0	6.0	1047	
5	4.8	V356 Sgr	4.45	12.3	4.7	3090	10^{21}
6	3.5	CV Vel	3.44	6.0	6.0	1047	$2*10^{21}$
		h Aql	3.58			100	
7	2.25	UW Cma	2.20	43.5	32.5	8912	5*10 ²⁴
8	2.03	AG Per	T=2.029	4.5	4.5	660	
		α Vir	2.007	10.3	6.4	257	3*10 ²²
9	1.33	V906 Sco	1.393	3.5	2.8	251	
10	0.966	G Aql	0.975	6.8	5.4	549	$2*10^{23}$
11	0.666	Y Aql	0.651	7.5	6.9	275	5*10 ²³
12	0.543	IM Mon	0.595	8.4	5.6	724	$1*10^{24}$
14	0.323	VV U.Ma	0.343	2.1	0.5	512	1*10 ²²
		YY Eri	T=0.321	0.76	0.5	42	$1*10^{22}$
16	0.265	i Boo	0.268	1.35	0.68	12	1*10 ²³
20	0.160	SW Lac	0.160	0.97	0.82	74	$1*10^{23}$
21	0.142	j U.Mi	T=0.143			>100	
28	0.0751	j. U.Mi	0.0715				
29	0.0559	WZ Sge	T=0.0559	0.08	0.6	100	
34	0.0285	WZ Sge	0.0280	0.08	0.6	100	4*10 ²²

First hypothesis for explanation of Table is an existing gas-dust streams from binary stars near systems solar system and interacted on with lunar surface; second is it correlation to the gravitation radiation from the same stars. We think that first hypothesis is more real.

References.

- 1. Sadeh D. Possible siderial period for the seismic lunar activity. "Nature" .240,p.139,nov.17,1972 2. *Oberst J. and Nakamura Y*. A Search for Clustering among the Meteoroid Impacts Detected by the Apollo Lunar Seismic Network, ICARUS, Vol. 91, 315-325, 1991 Balazin M. and Zetzsche A., PHYS.STAT.SOL., Vol. 2, 1962 1670-1674
- 3. Khavroshkin O.B. and Tsyplakov V.V. Meteoroid stream impacts on the Moon: Information of duration of the seismograms. Proceedings of the Conference METEOROID 2001, Swedish Institute of Space Physics, Kiruna, Sweden, 6-10 August 2001
- 4.Khavroshkin O.B. and Tsyplakov V.V., Temporal Structure of Meteoroid Streams and Lunar Seismicity according to Nakamura's Catalogue Proceedings of the Conference METEOROID 2001, Swedish Institute of Space Physics, Kiruna, Sweden, 6-10 August 2001
- 5. Хаврошкин О.Б., Цыплаков В.В. Экзогенная сейсмичность Луны: поиск и изучение космогонической составляющей. Вестник отделения наук о Земле РАН.Электронный научно-информационный журнал №4 (21) 2003.
- 6.Хаврошкин О.Б., Цыплаков В.В. Особенности огибающих гистограмм длительностей импактных лунных сейсмограмм. Очерки геофизических исследований. М., ОИФЗ РАН, 2003, 471с.
- 7 O.B.Khavroshkin, V.V.Tsyplakov., Hidden astrophysical periodicities of lunar seismisity. Herald of the DGGGMS RAS Electronic Scientific Information Jornal №4(14)` 2000