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Summary: We demonstrate that a critical fault tip 

gradient is associated with fault propagation through 
its connection to material yield strength. This method 
of relating fault tip gradient to yield strength is applied 
to four Martian normal faults in the Tempe Terra 
region of northeast Tharsis, with tip gradients ranging 
between 0.126° and 0.212°, corresponding to yield 
strengths between 9 and 17 MPa. These values are 
dependent on the lithology and water content in the 
crust, so our methods can be used to examine how 
rock type and water content vary spatially across Mars. 

where δt is the fault tip shearing displacement, σd is the 
driving stress, σy is the yield strength, and a is related 
to the fault half-length (c) and the end zone length (d) 
by c = - d. The yield strength, in MPa, is a
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where E is Young’s modulus, in MPa.  
The stress concentration at the tip of a fault must 

exceed the yield strength of the surrounding material 
in order to propagate [4], implying that if the fault tip 
gradient is equal to or above a critical value, the yield 
strength will be met, so the fault will propagate.   

Introduction and Background: The Dugdale 
model, which was developed for examining inelastic 
deformation at crack tips [1], avoids the stress 
singularity that is problematic in previous Linear 
Elastic Fracture Mechanics models by explicitly 
considering a high cohesion zone at the crack tip [e.g. 
2,3]. One of the key characteristics of the Dugdale 
model, that is also found in many faults, is that the 
profile of displacement along the crack length tapers 
gradually toward the crack tip [4]. Cowie and Scholz 
[4] applied the Dugdale model to faults and showed 
that it provides a sound mechanical basis for the D/L 
ratios observed in the field. A representative D/L ratio 
for terrestrial faults is 1-5×10-2  [4,5], while for Mars 
the D/L ratio is ~1×10-3 [6].  

Methods: To verify that the relation between tip 
gradient and  yield strength using the Dugdale model 
can be applied to fault propagation, we calculate yield 
strengths by using fault tip gradient and other 
parameter values from two studies of terrestrial faults 
and compare these values to published yield strength 
values.   

Cowie and Scholz [4] analyzed data from the Coal 
Measure normal faults in Britain to obtain values of 
modulus, the driving stress to yield strength ratio 
(σd/σy), and yield strength. Using the values for 
modulus and σd/σy and equations (1) and (2), we plot 
the relation between fault tip gradient and yield 
strength. We use their average values for several fault 
parameters to determine the fault tip gradient. 

In this study, we show that the Dugdale model can 
be used to define a new criterion for fault propagation 
using a quantity observable in topography data (fault 
tip gradient). Fault propagation is related to yield 
strength and, in turn, to fault tip gradient. We apply 
this method of yield strength determination to Mars 
and discuss implications for using changes in tip 
gradient across Mars to determine how rock type and 
water content vary in the crust and how they enhance 
or impede fault propagation.   

Soliva and Benedicto [7] studied a population of 
normal faults and obtained values for modulus and 
σd/σy. We use these values with measured tip gradient 
values to determine yield strength.  

Results: Using parameters from Cowie and Scholz 
[4], we calculated a yield strength of ~140 MPa (Fig. 
1), while they determined yield strength values 
between 170 and 190 MPa [4]. Although lower than 
the yield strengths of Cowie and Scholz [4], our value 
is well within a factor of two, indicating that the use of 
the Dugdale model to determine yield strength is valid. 

Fault Propagation: The Dugdale equations 
describing the fault end-zone length and the fault tip 
shearing displacement [1] can be used to solve for the 
fault tip displacement gradient, δt/d, and the yield 
strength, σy. The tip gradient, in degrees, is  The value of yield strength that we determine from 

parameters set in Soliva and Benedicto [7] is ~31 MPa 
(Fig. 1), whereas the value in Hatheway and Kiersch 
[8] for the unconfined compressive strength (UCS) of 
a material with similar modulus and Poisson’s ratio 
values is ~12 MPa. Since the faulting depth was below 
the surface, the yield strength value should be higher 
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Figure 1. Yield strength vs. tip gradient for terrestrial examples 
[4,7], with graph input parameters, individual tip gradients, and 
resulting yield strengths shown. 
 
than the UCS value. When taking this into account, the 
value of yield strength obtained here and the published 
value appear to be a reasonable match. 

Application to Mars: The two case studies above 
show that using the Dugdale model to determine yield 
strength is a valid approach. To apply this method to 
Mars, we examine four graben-bounding faults (from 
two grabens) in the Tempe Terra region. Using MOLA 
based DEM’s gridded at 200 pixels/° [9] we measure 
relief along the fault strike and convert these 
measurements to displacement, assuming a fault plane 
dip of 60°. From these displacement profiles, four fault 
tip gradients, one from each fault, are extracted. Since 
Young’s modulus values on Mars cannot be directly 
measured, we use a reasonable approximation of 
deformation modulus (E*), a measure of the 
deformability of a fractured rock mass that 
corresponds to Young’s modulus in equations (1) and 
(2) [10]. To calculate E*, a Rock Mass Rating value of 
50, typical for surface fracture densities, was chosen, 
with a resulting modulus value of 10 GPa [10,11]. A 
representative range of values for σd/σy is between 0.2 
and 0.5, with most faults having σd/σy values between 
0.33 and 0.5 [12]. We apply the range between 0.2 and 
0.5 to show how this parameter affects yield strength.     

The four tip gradient measurements and the above 
parameter values are used to calculate possible yield 
strengths for the material surrounding the fault tips for 
the two Tempe Terra grabens (Fig. 2). The values 
range between  9 and 15 MPa for a σd/σy value of 0.2 
and between 10 and 17 for a σd/σy ratio of 0.5.  

Conclusions and Implications: The Dugdale 
model can be used to define a material yield strength 
and a critical fault tip gradient for propagation. As 

shown, this method can be applied to the determination 
of yield strengths on Mars, with the yield strength 
ranging between 9 and 17 MPa for the material 
surrounding the four examined faults. The yield 
strengths for Mars are smaller than the terrestrial 
values we calculate of 31 MPa and 140 MPa, 
consistent with gravity scaling [13]. This relationship 
is also consistent with smaller values of D/L for 
Martian faults relative to terrestrial faults [6,13].   

Yield strength is dependent on lithology and pore-
water content [14]. Since tip gradient is directly related 
to yield strength, changes in displacement gradient 
across Mars can be used to examine how rock type and 
water content vary in the Martian crust. For example, 
the transition from Tharsis to the Northern plains on 
Mars would cause a reduction in tip gradients and 
yield strengths if the materials of the plains are either 
softer or wetter (or both) than those on the Tharsis rise.   
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Figure 2. Yield strength vs. tip gradient for Martian examples, with  
input parameters shown. The tip gradients and resulting yield 
strengths for the two grabens examined are differentiated by line 
style and color.   
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