ENDEMIC Mo ISOTOPIC ANOMALIES IN IRON AND CARBONACEOUS METEORITES. J. H. Chen¹, D. A. Papanastassiou¹,², G. J. Wasserburg³, and H. H. Ngo¹, ¹Earth and Space Sciences Division, M/S 183-601 (M/S 183-335), Jet Propulsion Laboratory, Caltech, 4800 Oak Grove Dr., Pasadena, CA 91109. ³The Lunatic Asylum, Division of Geological and Planetary Sciences, M/C 170-25, Caltech, Pasadena, CA 91125.

Mo in refractory interstellar grains shows large isotope anomalies [1-3]. Recent Mo studies showed isotope effects in Allende and Murchison, and in iron meteorites, mesosiderites, and pallasites [4-6]. Excesses of p- and r-process isotopes (or depletion of s-process isotopes) of up to 3.5 ε units (ε=parts in 10⁶) were reported. We have reported on endemic isotope anomalies in Ru [7, 8]. Other workers have resolved no isotope anomalies for Mo [9-11] or Ru [12] and have claimed that the work by [4-7] is incorrect. Because Ru isotopes can interfere at εRu (up to 0.7ε) Mo, we improved the chemical separations and eliminated interferences. For Mo work, we used the same solutions from which we separated and analyzed Ru [7,8]. Three of the iron meteorites (Coahuila, Cape York, and Cape of Good Hope) were chosen for their large Mo isotopic effects [4]. Mo was loaded on outgassed Re filaments, and measured Mo in static mode, as MoO₂⁺ for Mo standards we show 2σ (not 2σ mean) external precision better than: 0.7ε for ⁹⁶Mo/⁹⁸Mo and ⁹⁷Mo/⁹⁹Mo; 1.0ε for ⁹²Mo/⁹⁶Mo and ⁹⁷Mo/⁹⁹Mo; 1.4ε for ¹⁰⁰Mo/⁹⁶Mo. Reproducibility for Mo standards is shown as contours (blue lines) in Fig. 1a-d.

Iron meteorites. Two analyses on Bennett Co. (IIA) yield normal Mo isotopic composition. Coahuila (IIA) shows an excess in ⁹²Mo (1.7±0.5εu), while Cape York shows shifts in both ⁹⁶Mo (2.1±1.2εu) and ⁹⁷Mo (1.6±0.5εu). Two group IIIB irons (Acuna, Tres Castillos) and a group IVB iron (Cape of Good Hope), show hints of possible shifts in ⁹²Mo and ⁹⁷Mo. Hoba (IVB) yields normal values, despite its ¹⁰⁰Ru deficit [7]. Direct comparison of our results with [4] shows: a) Coahuila: agreement for ⁹²,⁹⁴,⁹⁶Mo; but, we report no resolved effects for ⁹⁷,¹⁰⁰Mo; b) Cape York: agreement for ⁹₂,⁹⁴Mo; excess ⁹⁵Mo which is larger than the excess in [4]; no effects in ⁹⁷,¹⁰⁰Mo, where [4] reported a marginal excess in ⁹⁷Mo and no effect in ¹⁰⁰Mo; c) Cape of Good Hope: agreement for ⁹²Mo; disagreement for ⁹⁴Mo, where we find no effect; agreement for excess in ⁹⁷Mo; agreement for ⁹⁷,¹⁰⁰Mo which show no resolved effects either here or in [4]. For this meteorite, no effect was found in ⁹⁴,⁹⁵,⁹⁷Mo by [6].

Pallasites and Ordinary Chondrites. A pallasite (Spring Water) and two OCs (Olivenza and Ransom) show no shifts in Mo isotopic compositions.

Carbonaceous Chondrites and CAI. Murchison (CM2) and two samples of Allende (CV3) show clearly resolvable shifts in ⁹²Mo (up to 2.6±0.5εu) and ⁹⁷Mo (up to 1.9±0.3εu). Three Allende coarse-grained CAI (Egg-3, Egg-6, Big-Al) also show relatively large shifts in ⁹²Mo (1.5±1.0, 1.7±1.0, 2.8±0.3εu) and ⁹⁵Mo (1.5±0.7, 1.7±0.3, 2.1±0.3εu). These “whole rocks” and coarse CAI show no resolved effects for ⁹⁴,¹⁰⁰Mo. A fine-grained spinel-rich Allende CAI (Pink Angel [13]) shows a distinct pattern, with well-resolved deficits in ⁹²Mo (-1.6±0.3εu), ⁹⁷Mo (-2.6±0.6εu) and ¹⁰⁰Mo (-1.7±0.7εu). This pattern is similar to the pattern observed for a Murchison mainstream SiC grain [1] and consistent with both the classical and stellar s-processes [14]. Overall, the new Mo data on IIA, IIIAB, IVB iron meteorites, on carbonaceous chondrites and on 3 coarse-grained Allende CAI clearly show enrichments of ⁹⁵Mo (pure p-process) and ⁹⁷Mo (s- and r-process), but no resolvable shifts in other Mo isotopes. The absence of effects in ⁹²Mo can be ascertained with high precision from our data. An s-process pattern is observed for the spinel-rich, fine-grained CAI Pink Angel. We confirm the presence of clear isotope anomalies for Mo, including the presence of large anomalies for carbonaceous meteorites [4-6] and Allende CAI. The effects that we are reporting are different from the general “Mo-W” pattern reported previously [4-6]. In particular, within the resolution of our data, we do not identify excesses in ⁹⁴,¹⁰⁰Mo/⁹⁶Mo. We also observe that effects in the p-process isotope ⁹²Mo are not accompanied by similar effects in the ²nd p-process isotope, ⁹⁶Mo. This indicates that the observed p-process effects in Mo for this study are distinct from the average p-process represented by the Solar System “normal” Mo composition. The pattern for the p-process isotopes suggests that production of ⁹²Mo is enhanced over production of ⁹⁶Mo, in the exotic component (or components). We note that the high abundances for p-process isotopes both for Mo and Ru have long been a key puzzle for nucleosynthesis. The observation of no detectable enrichment in ¹⁰⁰Mo, an r-only isotope, indicates that p- and r-process contributions are decoupled, as was observed also for Sm and Nd isotope anomalies for FUN Allende CAI C-1 [15, 16]. A correlation of ¹⁰⁰Ru/¹⁰⁰Ru (from [7]) and ⁹²Mo/⁹⁶Mo (from [4]), presented by [18] is due to a mixture of s-process and of the potentially distinct p-process which produced the
92Mo in preference to 94Mo. In comparison, our Ru data [7,8] on iron meteorites, pallasites, carbonaceous chondrites and Allende CAI suggest up to ~1.7 ε depletion in a pure s-process nuclide, 100Ru, relative to other Ru isotopes. The absence of 97Mo and 100Mo effects in our data, removes the clear resolution of an r-process contribution and leaves the effects in 95Mo harder to interpret. Mo in Allende CAI A44A [6] does show an r-process component (decoupled also from p-process [6]). We conclude, along with [6, 18], that there is evidence for multiple r-process components to address the observed Mo isotope anomalies. Our new Mo results show enrichments of 92Mo and 95Mo in some IIA, IIIAB, IVB meteorites, carbonaceous chondrites and Allende CAIs, but absence of Mo isotopic anomalies in some other iron meteorites, in pallasites, and in ordinary chondrites. Our new results confirm the presence of isotope anomalies for Mo and Ru not only in primitive meteorites, but preserved also in planetary differentiates. The results we have presented are in disagreement with the general conclusions of [9,10, and 11] on the ostensible absence of Ru and/or Mo anomalies even in carbonaceous meteorites. Similarly the conclusions reached in a news commentary by [19] are in disagreement with our Mo and Ru data and with reports of small isotope anomalies by many groups. The disagreements in the Mo data reflect probably technical issues associated with mass interference corrections, which are absent in the data presented here.