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Summary: A long-popular model for producing Ganymede’s
bright terrain involves flooding of low-lying graben with liquid
water, slush, or warm, soft ice. The model suffers from major
problems, however, including the absence of obvious near-
surface heat sources, the negative buoyancy of liquid water,
and the lack of a mechanism for confining the flows to graben
floors. We show that topography — such as a global set of
graben — causes subsurface (ahydrostatic) pressure gradients
that can “suck” subsurface liquid water upward onto the floors
of topographic lows (graben). As the low areas become full,
the pressure gradients disappear and the resurfacing ceases.
This provides an explanation for the observed straight dark-
bright terrain boundaries: water cannot overflow the graben, so
surfacing rarely embays craters and other rough topography.
Subsurface liquid water must exist for the scenario to exist,
of course, and is plausibly provided by tidal heating during
an ancient orbital resonance. This abstract is a summary of
Showman et al. [1] recently submitted to Icarus.

Introduction: About 65% of Ganymede’s surface consists
of bright terrain with relatively low crater densities, indicat-
ing that intense geological activity occurred between ��� –3
Ga ago [2]. The prevailing Voyager-era view was that the
bright terrain formed by flooding of a global set of graben
— i.e., low-lying, fault-bounded blocks produced by litho-
spheric extension — with liquid water, slush, or warm, soft
ice. The problem is that liquid water is denser than ice, so any
liquid produced at even shallow depths will percolate down-
ward, away from the surface, and be unavailable for volcanic
resurfacing. Although resurfacing by tectonic deformation has
occurred in some places [3, 4], it has difficulty explaining re-
gions of smooth bright terrain unless cryovolcanism occurred
concurrently with the tectonism, so a mechanism for cryvol-
canism is still needed. Resurfacing by solid ice is possible
[5], but regions of very flat, smooth bright terrain [6] are bet-
ter explained by a low-viscosity agent such as liquid water or
slush.

For cryovolcanism to explain Ganymede’s bright terrain,
two conditions must be met: First, the eruption locations must
be confined to the graben floors. Any mechanism that allows
eruption of cryvolcanic materials within topographic highs is
inconsistent with observations, because the erupted materials
would flow downhill toward topographic lows, leaving rilles
or other obvious flow markings, which are lacking within
Ganymede’s dark terrain. Second, the eruptions must not
overflow the graben — otherwise, chaotic bright-dark terrain
boundaries that embay topography would be produced. This
suggests the existence of a shut-off mechanism that terminated
the eruptions before the graben overflowed.

Here we investigate how near-surface liquid water pro-
duced during ancient tidal heating events can be delivered to
Ganymede surface.

Model for Melt Migration: Melting takes place first along
grain boundaries, and we envision that the liquid water pro-
duced during tidal heating initially exists within an intercon-
nected network of melt-filled pores, at grain boundaries, that
constitute only a small fraction of the total volume. This melt
can be flushed from the matrix in response to melt-matrix
buoyancy or external forces.

The equations governing the coupled flow of a melt and
matrix have been derived by several groups [7,8]. The momen-
tum equation governing the relative flow of melt and matrix,
essentially Darcy’s law, can be written in general form as [8]

�����	��

�
�� �������
���� � �� ��
�� ����� ��
��� � 
"!$#	% ��

�'& 
�(*) � � �
where

�
is the melt fraction (equivalent to porosity),

�
is the

permeability, # is gravity,
� ��
��

, � ��

� , and % ��
�� are the pressure,
viscosity, and density of the melt,

& 
 + is the Kronecker delta,� ��
��
 and
� �����
 are the true velocities of the melt and matrix,

respectively,
� 
 are the spatial coordinates, , is height, and- � � , 2, and 3 are the coordinate indeces. Using a viscous

constitutive law for the matrix, we can write Darcy’s law solely
in terms of the velocity fields [8]. In vector notation, the
equation becomes���/. ��
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are the shear
and bulk viscosities of the matrix, respectively. Three factors
affect the migration of melt relative to solid: the melt-matrix
buoyancy (first term), the pressure gradient caused by gradients
of matrix volume changes due to expansion and compaction
(second term), and the pressure gradient caused by volume-
conserving shear deformation of the matrix (third term). For
Ganymede, 2C% is positive and the buoyancy term causes down-
ward percolation of the melt. However, under appropriate con-
ditions the matrix deformation terms can counteract the neg-
ative buoyancy, allowing liquid water to rise upward through
the ice.

Consider the effects of surface topography. Topography
causes subsurface stress fields that induce upward motion of
the solid ice underneath topographic lows and downward mo-
tion underneath topographic highs, which lessens the topog-
raphy over time (crater relaxation and post-glacial rebound
being standard examples). The flow is effectively driven by an
ahydrostatic pressure-gradient force �65 � � 5 . ����� � that points
downward beneath topographic highs and upward beneath to-
pographic lows. Through Eq. (2), this pressure-gradient force
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associated with matrix flow beneath topographic lows coun-
teracts the negative buoyancy of the liquid water.
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A simple two-dimensional analytical solution, assuming
constant viscosity, illustrates this process. When melt fraction
is constant and melting is ignored, the matrix flow is incom-
pressible. In the limit where the melt fraction

�
goes toward

zero, the melt has negligible influence on the matrix force bal-
ance and

. �����
is governed by pressure-gradient, viscous, and

gravity forces in the matrix alone. The velocity
. �����

is then
just determined by a standard solution for gravitational relax-
ation of a one-phase, viscous fluid [ref. 9, Chapter 6]. Let
the satellite interior and surface correspond to an infinite half-
space with a sinusoidal surface topography F � F�G�H"I)J �9K � � ,
where

K
is the wavenumber equal to

B)L
over the wavelength,�

is horizontal distance, and F?G KNM � (the height of the to-
pography is much less than its wavelength). The topography
provides a crude representation of horst and graben formed by
lithospheric extension. We apply a no-slip boundary condi-
tion (horizontal speed equals zero) at the surface, appropriate
because a stiff lithosphere overlies the partially molten region.
With this condition, the matrix velocity

. �����
is given by [ref.

9, pp. 238-240]
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where S and 4 are the horizontal and upward unit vectors,
respectively. The pressure gradients associated with the topo-
graphically induced flow are
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where , is height; , is zero at the surface and negative within
the interior. These pressure gradients are illustrated in Fig. 1b
for the two-km peak-to-peak sinusoidal topography ( F6G �� � km) shown in Fig. 1a. As expected, the pressure gradients
indicate that the ice flows upward underneath topographic lows
and downward underneath topographic highs. From Eq. (2),
the net pressure gradient affecting the melt (i.e., the quantity
in square brackets in Eq. 2) is that in Fig. 1b plus the nega-
tive buoyancy of the melt. This is shown in Fig. 1c assuming2C% �WV)X kg m Y?Z , relevant for pure liquid water and ice.
The topographic pressure gradients underneath topographic
lows can overwhelm the negative buoyancy of the liquid wa-
ter, resulting in a net pressure gradient that drives liquid water
upward into the topographic lows despite the liquid’s nega-
tive buoyancy. Eruptions are confined solely to topographic
lows (graben); furthermore, as the graben fill, the topography
— hence pressure gradients — disappear and the resurfac-
ing automatically ceases. Water therefore cannot overflow
the graben. Therefore, the straight bright-dark terrain bound-
aries and absenceof cryovolcanic flow features extending from
high-altitude dark terrain into lower-altitude bright terrain can
be naturally explained.

A range of calculations [1] shows that liquid can be pumped
from up to � 10 km depth. Plausible ancient tidal heating
events [1, 10] could cause melting at 5–10 km depth, at least
in some regions, suggesting that liquid was available to be
pumped upward to the surface. Alternately, if open exten-
sion fractures can form during graben formation, the pressure
gradients might act to drive slush onto the graben floors. Be-
cause slush is almost neutrally buoyant, the relevant pressure
gradients are those in Fig. 1b, and so slush can be pumped
from depths exceeding 20 km. A challenge for these models is
the short predicted gravitational relaxation timescales of topo-
graphic features at high heat flows; the resurfacing must occur
before the topography disappears.
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