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Introduction: Acapulcoites and lodranites are similar in 
mineralogy, major element and oxygen isotopic composi-
tions [1,2]. They are considered to have been produced by 
partial melting [3] and are thus may provide important in-
formation about the early melting histories of the meteorite 
parent bodies. Except for a few cases, however, the chrono-
logical and detailed trace element data for these meteorites 
are still limited. We present here results of Sm-Nd isotopic 
and lithophile element analyses for four bulk acapulcoites-
lodranites samples as well as mineral separates from one of 
the acapulcoites, LEW86220.  

Samples and Analyses: Seven bulk samples from three 
acapulcoites (LEW86220, ALH81261, ALH81187), one 
lodranite (GRA95209) and one intermediate sample 
(EET84302) were analyzed for isotopic composition by us-
ing Finnegan MAT 262 and/or lihophile elements by ID and 
ICP-AES. In addition, six mineral separates from the LEW 
acapulcoite were also analyzed for Sm-Nd (note: The abun-
dance data were partially reported previously in [4].  

Results and discussion:  As shown in Fig. 1, all acapul-
coites show systematic depletion of alkalis and nearly CI-
chondritic REE (except for Acapulco REE which is not 
shown here). GRA (lodranite) show systematic lithophile 
fractionations; Rb<K<Sr=Eu< LREE<Na<Li<HREE. Partial 
melting calculation suggests that silicate-melts of a few % 
for acapulcoites and about 15% for GRA were segregated 
from the chondritic sources. 

Three bulk meteorites (two acapulcites ALH81261 and 
ALH81187  and one lodranite, GRA) indicate a model age of 
4.55±0.03 Ga calculated from the initial 143Nd/144Nd ratio of 
LEW 86010 [5]. On the other hand, LEW shows a model of 
4.59±0.03Ga. (Recently we recalibrated Sm-Nd spike solu-
tion and found that our previous Sm-Nd data [6] are  found 
to include small errors). The LEW86220 model age appears 
to be slightly higher than those of other acapulcoites-
lodranites, suggesting that the meteorite experienced a sec-
ondary Sm-Nd disturbance. In order to examine detailed Sm-
Nd isotopic signatures recorded during the secondary event 
and to determine the time of the event, we have carried out 
Sm-Nd isotopic analyses for six mineral separates (clino-
pyroxene [CPX], orthopyroxene [OPX], phosphate [PH], 
plagioclase [PL], whole-rock leachate [WR-L] and whole-
rock residue [WR-R]) and two whole-rock samples [WR-1, -
2] from LEW86220. 

As shown in Fig. 2, most of LEW86220 data points,  ex-
cept for plagioclase, define a linear array, indicating that the 
Sm-Nd isotopic system has been reset but not for plagioclase 
by a late thermal event. The slope and intercept of the line 

corresponds to an age of 4.13 ±0.10Ga and an initial 
143Nd/144Nd ratio of 0.50732±0.00015 (εCHUR=+1.3±3.0), 
respectively. The data point of plagioclase clearly deviated 
from the 4.13 Ga regression line (deviation:δNd=-1.3±0.08). 
The 147Sm-143Nd model age of plagioclase calculated from 
the LEW86010 initial ratio [5] is 4.56±0.04Ga, suggesting 
that the Sm-Nd system has been closed since the early for-
mation of the meteorite and have not been influenced by the 
late thermal event. This is reconciled with the least diffusiv-
ity of NaSi-CaAl in plagioclase among constituent minerals 
such as cline- and orth-pyroxenes (though diffusivities of 
REE in plagioclase are not well known). 
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     Fig. 1 Trace element patterns for acapulcoites. 
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Fig. 2. Sm-Nd evolution diagram for LEW86220 
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This age is clearly younger than the Sm-Nd age of 4.60±
0.03Ga reported for Acapulco [7], as well as typical forma-
tion age (4.55Ga) of angrites [5] and would thus provides an 
evidence for a late thermal event occurred on the parent body 
of acapulcoites-lodranites. The slightly high initial 
143Nd/144Nd ratio relative to CHUR (though with a large 
error) suggests that LEW86220 evolved as slightly sub-
chondritic elemental Nd/Sm ratio from the 4.55Ga to 4.1Ga. 
We, therefore, suggest the LEW86220 formed by igneous 
event at 4.55Ga, accompanied by slight light-REE depletion 
and followed by moderately-intense metamorphic event 
400m.y. later.  

It is reported that LEW86220 is unique in its texture [3], 
having two types of lithologies, fine-grained  (grain-seizes; 
150±70µm) (acapulcoite type) and coarse-grained (lodranite 
type) (grain-sizes; 1-3mm). Plagioclase grains have homoge-
neous compositions (An15.1±1.1) in the acapulcoite lithol-
ogy but variable compositions (An8.6-18.5) in the lodranite 
lithology  [3]. It is thus interesting to see if the young meta-
morphic event as recored in Sm-Nd isotopes is related to 
such unique lithologies or not. Under binocular microscopes, 
our samples analyzed here appeared to be coarse grained. 
However, unfortunately, we have not yet obtain An composi-
tion of plagioclase separates studied for Sm-Nd isotopes. So 
analyses of residual plagioclase samples are in progress.  
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