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Introduction: We are developing an automated
science analysis system that could be utilized by
robotic or human explorers on Mars (or even in
remote locations on Earth) to improve the quality and
quantity of science data returned. Three components
of this system (our rock, layer, and horizon detectors)
[1] have been incorporated into the JPL CLARITY
system for possible use by MSL and future Mars
robotic missions. Two other components include a
multi-spectral image compression (SPEC) algorithm
for pancam-type images with multiple filters and
image fusion algorithms that identify the in focus
regions of individual images in an image focal series
[2]. Recently, we have been working to combine
image and spectral data, and other knowledge to
identify both rocks and minerals.  Here we present
our progress on developing an igneous rock detection
system.

We have been focusing on identifying rocks,
autonomously, based on their color and texture (and
eventually spectra) as measured from lab images of
field samples.  Initial work on our prototype image
analysis system identified some igneous rocks from
texture and color information [3,4].  For example, our
texture algorithm successfully identified plutonic
(crystalline, e.g., granite) from volcanic
(noncrystalline, e.g., basalt) rocks with up to 90%
reliability.  Our color algorithm has been able to
distinguish between felsic, intermediate, and mafic
igneous rocks with up to 80% reliability.

When considering color only, using the weighted
k-nearest neighbors approach [5], the algorithm
correctly identified greater than 70% of the felsic
rocks, at least 70% of the intermediate rocks, and
greater than 80% of the mafic rocks. Using a similar
approach for texture, the algorithm correctly
identified 85% of the plutonic rocks and 76% of the
volcanic rocks. We have used both Bayesian and
Decision Tree automated reasoning approaches to
combine the results of the color and texture
algorithms. Based on our tests to date, the Decision
Tree method has yielded better results, correctly
identifying at least 80% of granites and granodiorites
and greater than 70% of andesites and basalts using
color and texture algorithms combined. In addition to
the generally better performance, the Decision Tree
method has the advantage of allowing one to trace the
algorithm's line of reasoning in reaching a final

identification. Since a hierarchical method more
closely follows the line of reasoning used by
practicing geologists, we feel it may meet with
greater acceptance in spacecraft and field
applications.

Spectral analysis algorithms have also been
developed that successfully identify quartz, silica
polymorphs, calcite, pyroxene, and jarosite from both
visible/near-IR and mid-IR spectra [3,4].  We have
also developed spectral recognizers that identify
high-iron pyroxene and iron-bearing minerals using
visible/near-IR spectra only.  We have also initiated
development of an overall integrated reasoning
system that takes input from both image and spectral
data [4]

To support this technology development effort,
we have been building a combined image and
spectral database of rocks and minerals with which to
continue development and testing of our algorithms.
Currently, we have collected, imaged and analyzed
over 700 igneous, sedimentary, metamorphic rocks
and mineral samples. Images are taken under
controlled lighting and at fixed distances. We are in
the process of obtaining Raman and visible, near- and
mid-infrared spectra of the entire collection to help
identify the minerals that comprise the samples.
Analysis of both the physical properties and the
relative mineral abundances of a sample form the
basis of rock identification and classification. This
extensive dataset allows us to optimize and test the
algorithms under a variety of conditions. We will
report on the current ability of our algorithms to
identify and discriminate rock types with a variety of
input data.

We envision that operation of an actual GFA in a
field setting could entail covering a rock specimen
with a hood at the end of a robotic arm or inserting
the specimen into a self-contained field laboratory
equipped with artificial lighting. Spectra and images
of the sample would be obtained and the user (if
available) would be queried for any human input.
The system would then analyze the images and
spectra autonomously or with additional human
supervision. A top level reasoning system would then
combine inputs from the image and spectral
identifiers, human opinion, and any other data (e.g.
geological maps, or data from other sensors) to
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render an opinion about the composition, texture,
color and identification (rock classification) of the
sample.  The resulting high-level information would
allow robotic (or a human) explorer to prioritize
sample collection, recognize samples worthy of
additional immediate study, or provide critical high-
level information that can be used in the field to more
efficiently guide field exploration.  Such triage
measures, by saving time and resources, could be
invaluable when surface time or returned mass are
important constrained resources.
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