THE δ¹⁷O/δ¹⁸O RATIO ASSOCIATED WITH CO PHOTODISSOCIATION IN THE SOLAR NEBULA. J. R. Lyons, Institute of Geophysics and Planetary Physics, UCLA, Los Angeles, CA 90095-1567; jrl@ess.ucla.edu.

Introduction: The photodissociation of CO offers a quantitative and potentially self-consistent explanation for the origin of the mass-independent fractionation observed in CAIs [1]. Self-shielding due to the line-type absorption spectrum of CO yields product O with large, positive δ^{17} O and δ^{18} O values. Conversion of this O to H₂O forms the ¹⁶O-depleted end member of a two-component mixing model for primitive materials in the solar system [2]. Model results for CO self-shielding in the parent molecular cloud [3] and in the surface region of the solar nebula [4] indicate that CO self-shielding is a viable mechanism, given a flux of far-ultraviolet (FUV) radiation significantly enhanced (~10³ times) above local interstellar medium (ISM) values, consistent with a star-forming region.

If CO self-shielding is, in fact, the mechanism by which the slope-1 line (where 'slope' = $\delta^{17}O/\delta^{18}O$) in CAIs formed, then the measured CAI slope should be obtained during the primary photolysis step. Measured slopes in CAIs range from 0.95 [5] to 1.00 [6]. Most CAIs fall on a line of slope 0.95 +/- 0.01, referred to as the CCAM (carbonaceous chondrite anhydrous minerals) line [5]. One particular CAI (USNM 3576-1) in the Allende meteorite has several unaltered phases with slopes = 1.00 + -0.03 [6], suggesting that the primitive oxygen isotope reservoir of the solar nebula may have had a slope close to 1.00. Photodissociation of pure CO is expected to yield a slope > 1, analogous to self-shielding in pure O2 [8], due to greater selfshielding in C¹⁸O versus C¹⁷O. Model results for pure CO in the solar nebula predict a slope ~ 1.10 [7], well outside the range of measured slopes in CAIs.

In an interstellar or nebular environment CO photodissociation occurs in the presence of abundant H_2 . Here I investigate the effect of H_2 absorption on isotope-selective CO self-shielding.

Photochemical model of nebula:

The photochemical model is a 2-D axisymmetric nebula with 1-D (vertical) radiative transfer and mixing [7]. The model has been substantially updated [4] and now includes ion-molecule, gas phase, and gasgrain chemistry, using rate coefficients from the astrochemistry literature, e.g. [9,10]. H₂O production is now explicitly computed, and is found to occur primarily on grain surfaces. Non-mass dependent fractionation occurs during photolysis of CO isotopologues [7]:

$$C^{16}O + h\nu \rightarrow C + {}^{16}O$$

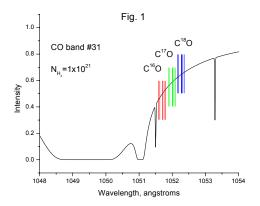
$$C^{17}O + h\nu \rightarrow C + {}^{17}O$$

$$C^{18}O + h\nu \rightarrow C + {}^{18}O$$

where photodissociation occurs in the wavelength range 91.2 to 110 nm in the presence of abundant hydrogen [11]. The gas-phase species in the model are

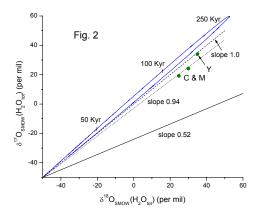
$$H_{2}$$
, H , CO , C , CH , CH_{2} , CH_{3} , CH_{4} , $C_{2}H$, $C_{2}H_{2}$, $C_{2}H_{4}$, $C_{3}H_{m}$, $C_{4}H_{m}$, O , OH , H , O , O , HCO , H , CO , CO , CH , OH

and the ion species are

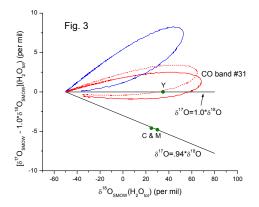

$$H_3^+$$
, C^+ , CH_2^+ , CH_3^+ , CH_3^+ , $C_2H_3^+$, $C_3H_m^+$, HCO^+ , H_3O^+

All gas-phase species also exist as molecules bound to grain surfaces. Molecular binding energies for adsorption to ice-coated grain surfaces are taken from previously published disk models [10]. The anomalous fractionation produced during CO photolysis is passed to other oxygen-containing molecular species during chemical reactions. At present the model has 96 species and 375 reactions.

Shielding by H₂ during CO photodissociation:


Assuming cosmic abundances of the elements, $CO/H_2 \sim 2 \times 10^{-4}$ in the solar nebula. Unity optical depth in CO thus occurs in the presence of highly saturated and broadened H_2 absorption lines. CO photodissociation occurs in ~ 30 bands, and about 8 of the bands undergo a large wavelength shift upon isotope substitution. H_2 and CO absorption spectra for a diffuse molecular cloud are given by van Dishoeck and Black [11]. Line-by-line calculations [11] showed that $\sim 60\%$ of $C^{18}O$ photodissociation occurred in just one band, labeled as band #31, centered at 1051.70 Å.

I have computed a synthetic H_2 absorption spectrum for the region of CO band #31 (Fig. 1, black curve) [12]. The calculation is for an H_2 column density of $1x10^{21}$ cm⁻². Band #31 line locations for $C^{16}O$, $C^{17}O$ and $C^{18}O$ are shown in color. Five lines are shown for each isotopologue, corresponding to transitions from the $J^{"}=1$ and 2 rotational states of the


electronic ground state $CO(X^1\Sigma)$ to the J=0-3 rotational states of the electronic excited state $CO(E^1\Pi)$. These lines correspond to the most populated rotational ground states at 20 K, and so are particularly relevant to molecular cloud conditions. At temperatures $\sim 50-100$ K, typical disk surface temperatures, more rotational states will be occupied, and the isotopologue transitions will overlap. Line positions were calculated using published molecular constants for CO and its isotopologues [13]. By computing H_2 absorption spectra as a function of H_2 column density, I was able to compute a shielding function that accounts for the differential effects of H_2 absorption during photodissociation of CO isotopologues in band #31 [4].

Results: Model results for total nebular water at the midplane, H_2O_{tot} , which includes H_2O produced from O liberated during CO dissociation and (unfractionated) H_2O inherited from the parent cloud, are shown in Figure 2. The calculations are for a heliocentric distance R=30~AU (midplane temperature = 51 K) and a viscosity parameter $\alpha=10^{-2}$. The effects of H_2 absorption (i.e., band #31) are not included here. Figure 2 demonstrates that on timescales of 10^5 years, midplane H_2O_{tot}

reaches δ -values comparable to nebular water values inferred from carbonaceous chondrites [2,14]. However, as discussed above, when differential shielding due to H_2 is neglected, the predicted slope of H_2O_{tot} is > 1.

Figure 3 shows the effect of including band #31. In order to more easily see the slope change, I've replotted the standard 3-isotope plot as $\delta^{18}O$ versus $\delta^{17}O - 1.0*\delta^{18}O$. The blue curve is the same as that shown in Fig. 2. The red curve shows the result obtained by applying the band #31 shielding function (which has a power law dependence on N_{H2} , the H_2 column density) at all N_{H2} . The dotted red curve shows the result when the maximum N_{H2} is limited to 1.5×10^{21} cm⁻², and demonstrates that the bulk of the differential shielding occurs for H_2 column densities $< 1.5 \times 10^{21}$ cm⁻².

Conclusions: H₂ absorption effects on CO band #31 yield a predicted model slope for total nebular water that is within the measured range for CAIs. Additional calculations are needed to evaluate H₂ absorption effects on other CO bands.

References: [1] Clayton R. N. (2002) LPSC XXXIII, abstract #1326. [2] Clayton R. N. and Mayeda T. K. (1984) Earth Planet. Sci. Lett., 67, 151-161. [3] Yurimoto, H. and Kuramoto, K. (2004) Science 305, 1763-1766. [4] Lyons J. R. and Young E. D. (2004), submitted. [5] Clayton, R. N. (1993), Ann. Rev. Earth Space Sci. 21, 115-149. [6] Young, E. D. and Russell, S. S. (1998) Science 282, 452-455. [7] Lyons, J. R. and Young, E. D. (2004), LPSC XXXV, abs. #1970. [8] Navon O. and Wasserburg G. J. (1985), Earth Planet. Sci. Lett. 73, 1-16. [9] Hasegawa T. et al. (1992) Astrophys. J. 82, 167-195. [10] Willacy K. et al. (1998) Astron. Astrophys. 338, 995-1005. [11] van Dishoeck E. and Black J. (1988) Astrophys. J. 334, 771-802. [12] McCandliss S. R. (2003) Pub. Astron. Soc. Pacific 115, 651-661. [13] Ubachs W. et al. (2000) J. Chem. Phys. 113, 547-560. [14] Young E. D. (2000) Phil. Trans. Roy. Soc. Lond. 359, 2095-2110.