AL-MG DATING OF CA-AL-RICH INCLUSIONS IN ACFER 094 CHONDRITE. N. Sugiura1 and A.N. Krot2, 1Department of Earth and Planetary Science, University of Tokyo, Japan. E-mail: Sugiura@eps.s.u-tokyo.ac.jp, 2University of Hawai‘i at Manoa, USA. E-mail: sasha@higp.hawaii.edu.

Introduction: Acfer 094 is one of the most primitive chondrites, which appears to have escaped thermal metamorphism above 300°C [1] and can potentially provide important clues to primary, undisturbed by parent body processes, abundances of short-lived radionuclides in its components. Krot et al. [2] have recently described mineralogy and petrography of the Al-rich chondrules and refractory inclusions in Acfer 094. Here we report Al-Mg systematics of Ca-Al-rich inclusions (CAIs) in Acfer 094 determined by secondary ion mass spectrometry.

Experimental: 14 CAIs in two polished sections of Acfer 094 were investigated, including 1 corundum-rich, 7 grossite-rich, 3 melilite-rich, 3 anorthite-rich [one of them is an amoeboid olivine aggregate (AOA)]. An O primary beam ~10 µm in diameter was used for sputtering. In some spots repeated measurements were made. Also, if Mg-rich and Al-poor minerals were present in the CAIs studied, their Mg isotopic compositions were measured to determine the y-intercept on the isochron diagram. Secondary ions of 24Mg, 25Mg, 26Mg were measured by an ion counting system based on an electron multiplier and 27Al was measured with a Faraday cup. The mass resolving power was set to ~4500, which is high enough to resolve doubly charged 48Ca from 24Mg. Since the relative sensitivity factor (Al/Mg') / (Al/Mg) for grossite is not well known, we assumed that it is similar to that for hibonite (~1.1).

Results: The results are illustrated in Figure 1. The vertical errors attached to data points are 1σ error based on the counting statistics. The errors of the Al/Mg ratios are almost entirely due to uncertainty (~8%) of the relative sensitivity factors. The canonical initial 26Al/27Al ratio of 5×10^{-5} is shown for reference. Out of 14 CAIs, 11 show nearly canonical initial ratios. The remaining 3 CAIs (#s2, corundum-rich CAI, #s1, grossite-rich; and #24, anorthite-rich; Fig. 2), have no resolvable excesses in 26Mg (26Mg*). Anorthite in an igneous, AOA-like object #11a (Fig. 3) has the canonical 26Al/27Al ratio.

Discussion: Refractory inclusions in Acfer 094 show bi-modal distribution of 26Mg*; ~75% of CAIs studied and an AOA-like object have the canonical 26Al/27Al ratios, whereas ~20% of CAIs show no resolvable 26Mg*. Since the Acfer 094 has largely escaped aqueous alteration and thermal metamorphism, these observations may suggest that the intermediate initial 26Al/27Al ratios detected in CAIs from thermally metamorphosed and/or hydrothermally-altered chondrites (e.g., Allende [3]) may have resulted from parent body alteration rather than late-stage (a few half-lives of 26Al after CAIs with canonical 26Al/27Al ratio) reheating in the solar nebula.

The grossite-rich CAI #s14 (Fig. 1) has the initial 26Al/27Al ratio of (6.3 ± 0.5) × 10^{-5} (1σ), which is higher than the canonical value (relatively large error is mostly due to the uncertainty in the relative sensitivity factor for grossite). If 26Al is interpreted chronologically, this CAI is significantly older than other CAIs in Acfer 094, suggesting that CAI formation may have lasted for several hundred thousand years, consistent with [4].

The previously reported initial 26Al/27Al ratios for three AOAs from Y-81020 (CO3.0) are ~3×10^{-5} [5]. It was suggested that AOAs could have formed significantly later than CAIs with the canonical 26Al/27Al ratios [5]. The 26Al/27Al ratio in the AOA-like object #11a from Acfer 094 is indistinguishable from the canonical, suggesting nearly contemporaneous formation with typical CAIs. Since Y-81020 is nearly as primitive as Acfer 094 [1], the small 26Al/27Al ratios in the Y-81020 AOAs cannot be entirely attributed to a different degree of parent-body alteration. It seems more likely that grain sizes of anorthite are an important factor. The anorthite analysed in this study was ~20 µm across. Although sizes of Y-81020 anorthite [5] were not specified, judging from the size (2-5 µm) of the O primary beam, they were probably smaller than that of this study and hence more easily disturbed during parent body metamorphism. Future studies of coarse anorthite grains in AOAs from Y-81020 and other primitive chondrites can test this hypothesis.

Three CAIs from Acfer 094 showed no resolvable 26Mg*. Since parent-body processes are unlikely to reset the initial 26Al/27Al ratios of these CAIs, these observations may indicate that lack of 26Mg* could be either due to a late-stage remelting (e.g., during chondrule formation) or due to heterogeneous distribution of 26Al in the protoplanetary disk, as has been previously inferred for isotopically anomalous platy hibonites and FUN CAIs. The very refractory nature of the corundum-rich CAI #s2 and the grossite-rich CAI #s1 and the presence of Wark-Lovering rim layers around them appears to favor lack of 26Al in their precursors. The anorthite-rich CAI #24 is less refractory,
has an igneous texture, and appears to lack Wark-Lovering rim layers. This CAI may have experienced late-stage remelting during chondrule formation. Oxygen isotopic studies of the 26Al-free CAIs is in progress and should be able to test both hypotheses.

References:

Fig. 1. Al-Mg evolutionary diagram of refractory inclusions from Acfer 094. 11 out of 14 inclusions studied have 26Mg* corresponding to a canonical 26Al/27Al ratio of 5×10−5. The remaining 3 CAIs (#s2, corundum-rich CAI, #s1, grossite-rich; and #24, anorthite-rich; Fig. 2), shown by open circles, have no resolvable 26Mg*.

Fig. 2. Backscattered electron images of the CAIs showing no evidence for 26Mg*. a – Corundum-rich CAI s2. b – Grossite-rich CAI s1; c – Anorthite-rich CAI #24. an = anorthite; cor = corundum; grs = grossite; hib = hibonite; mel = melilite; px = Al,Ti-diopside; sp = spinel. For details of their mineralogy and petrography, see [2].

Fig. 3. Backscattered electron image of an AOA-like, igneous object composed of anorthite (an), Al-Ti-diopside (px) and forsterite (ol). For details of its mineralogy and petrography, see [2].