DISTURBANCE OF U-Pb ISOTOPIC SYSTEMATICS IN LUNAR SAMPLES: MARE BASALT 10017 AND NORITE 78238.

J. Edmunson, A. M. Gaffney, L. E. Borg, Institute of Meteoritics, University of New Mexico (MSC03 2050, 1 University of New Mexico, Albuquerque NM 87131-0001, Edmunson@unm.edu).

Introduction: Many lunar samples record some degree of disturbance to their U-Pb isotopic systematics [e.g., 1, 2]. This disturbance may be reflected in Pb-Pb, 235U-207Pb, 238U-206Pb, or concordia ages that are discordant among the U-Pb systems as well as with the U-Pb system ages, allowing a reasonable source reservoir between 4558 (CDT) and 4334 Ma. The Sm-Nd crystallization age for 10017 is 3633 ± 60 Ma.

Norite 78238 is part of the Mg-suite and contains ~50% plagioclase and ~50% orthopyroxene. This sample was dated by Gaffney et al. [4] using the Sm-Nd, Rb-Sr, and U-Pb isotopic systems. The Sm-Nd crystallization age for 10017 is 3633 ± 60 Ma.

Observations: Fig. 1 illustrates the ages obtained for 10017 and 78238. Note that for both samples, the ages decrease in the order: Pb-Pb, 235U-207Pb, 238U-206Pb. Also note the overlap in the U-Pb system ages for 10017, and the extreme difference between U-Pb system ages for 78238. Fig. 1 also shows concordant ages obtained for 10017 from the Sm-Nd, Rb-Sr, and U-Pb systems, whereas the relatively young age obtained with the 238U-206Pb system for 78238 does not appear to have geologic significance.

Initial Pb isotopic compositions and source μ (238U/204Pb) can often be determined from U-Pb system isochrons. For example, the 10017 238U-206Pb isochron yields a source μ of 80 ± 36 assuming single-stage growth from CDT [7] at 4558 Ma to 3633 Ma. The 10017 235U-207Pb isochron yields a source μ of 61 ± 37 and is consistent with the 238U-206Pb estimate. For 78238, the error of the 238U-206Pb isochron does not allow a reasonable source μ to be defined (μ = 0 to 547). However, the 235U-207Pb isochron for 78238 yields a calculated source μ of 94 ± 43, consistent with the μ calculated from the Pb-Pb isochron of 72 ± 45.

Concordia diagrams were employed to further understand the U-Pb systematics of 10017 and 78238. Surprisingly, 10017 did not yield a concordant age due to scatter in the data, proximity of the data to the concordia curve, and the variability in possible Pb initial isotopic compositions. Conversely, a best-fit Tera-Wasserburg concordia for 78238 yielded an age of 4249 ± 83 Ma assuming single-stage growth in a reservoir between 4558 (CDT) and 4334 Ma. The best-fit μ of 25 differs greatly from the previous μ calculations.

Figure 1: Different ages obtained using the Sm-Nd, Rb-Sr, and U-Pb isotopic systems for mare basalt 10017 (circles) and Mg-suite norite 78238 (squares). The Sm-Nd ages obtained for both samples are interpreted to represent the crystallization ages. Note the different ages obtained with the Pb-Pb, 235U-207Pb, and the 238U-206Pb isotopic systems. C = crystallization age, M = metamorphism age.
Discussion: For both 10017 and 78238, different ages are obtained with the Pb-Pb, 235U-207Pb, and 238U-206Pb systems. The disturbance producing the difference in ages must have occurred after isotopic homogenization by melting and crystallization. The Pb-Pb, 235U-207Pb, and 238U-206Pb ages show similar systematics in both 10017 and 78238 (i.e., Pb-Pb > 235U-207Pb > 238U-206Pb). However, the crystallization ages of 10017 and 78238, defined by their Sm-Nd ages, are concordant with different U-Pb systems (238U-206Pb and Pb-Pb, respectively). Therefore, it is necessary to evaluate the role of post-crystallization events for U-Pb systems in the context of Sm-Nd and Rb-Sr ages. Two such post-crystallization events are contamination by lunar or terrestrial Pb and thermal metamorphism.

When represented in a Tera-Wasserburg Pb-Pb diagram [8], mineral fractions from both 10017 and 78238 show evidence for incorporation of lunar surface Pb (Fig. 2). The fractions of 10017 that lie closest to the 207Pb/206Pb axis (whole rock and ilmenite) have 207Pb/206Pb ratios that are higher than expected for the corresponding Sm-Nd age of the sample (i.e., an isochron in Fig. 2 through the 10017 points should intersect the 207Pb/206Pb axis at 0.33). Therefore, these fractions may have incorporated lunar surface Pb into trace phases such as sulfides and mesostasis. In contrast, the deviation of the plagioclase mineral fractions in 78238 towards high 207Pb/206Pb ratios and away from whole rock and terrestrial Pb compositions is a strong indicator that plagioclase in 78238 incorporated lunar soil. Unlike 10017, the plagioclase fractions of 78238 do not lie along a linear array with the remaining 78238 mineral fractions.

The large spread in the measured 238U-204Pb, 206Pb-204Pb and 208Pb/204Pb ratios of the individual mineral fractions from both 10017 and 78238 (not shown) indicates that terrestrial Pb, if present after blank corrections, is not a significant contributor to the isotopic composition of the mineral fractions.

Models for post-crystallization disturbances to the U-Pb isotopic systematics of lunar materials must explain the spread in Pb-Pb, 235U-207Pb, and 238U-206Pb ages as well as the relationship between U-Pb systems and their Sm-Nd and Rb-Sr counterparts. One can assume the natural present-day 238U/235U ratio of 137.88, measured in lunar samples by Chen and Wasserburg [10]. It is possible to modify the Pb isotopic composition after crystallization by loss of Pb at some time in the past. Elemental U and Pb can be fractionated in a crystalline rock by volatilization or diffusional loss of Pb. Preliminary results from theoretical models indicate that episodic loss of Pb during an impact or thermal metamorphism event some time after crystallization creates the spread in U-Pb and Pb-Pb ages in the order Pb-Pb > 235U-207Pb > 238U-206Pb. This order is observed in both 10017 and 78238. Unfortunately, the relationship between the U-Pb systems and the Sm-Nd and Rb-Sr systems for 10017 and 78238 has not been clarified.

Reproducing the time-dependent, complex U-Pb systematics of 10017 and 78238 requires a model that combines post-crystallization loss of Pb with contamination by lunar and terrestrial Pb. As the comparison of 78238 and 10017 demonstrates, there is no single U-Pb system isochron that reliably provides the crystallization age for all samples. Rather, the U-Pb systematics for any given lunar sample must be evaluated in the context of a more robust geochronologic system, such as Sm-Nd or Rb-Sr, in order to assign geochronologic significance to the various Pb-Pb, 238U-206Pb, and 208U-206Pb ages. When Sm-Nd and Rb-Sr systematics are applied to the U-Pb systems, it is then possible to extract useful petrogenetic information, such as source μ, from some lunar samples.