NEW I-Xe AGES OF CHONDRULES FROM THE ORDINARY L4 CHONDRITE SARATOV.
Olga Pravdivtseva1, Alex Meshik1, Charles M. Hohenberg1, Yu. Amelin2
1McDonnell Center for the Space Sciences and Physics Department, Washington University, CB 1105, Saint Louis, MO 63130, USA, E-mail: olga@wuphys.wustl.edu
2Geological Survey of Canada, Ottawa, Ontario Canada K1A 0E8; yamelin@nrcan.gc.ca

Chondrules from the ordinary chondrite Saratov (L4), were studied as a part of the ongoing investigation of I-Xe and Pb-Pb systems in chondrules from the ordinary chondrites covering different types and metamorphic grades. In the course of this work we analyze and report I-Xe ages for chondrules from Unnamed Antarctic LL3.6 [1, 2], Elenovka L5 [3], NWA 267 H4 [4], and Richardton H5 [5]. Considered together with the previously reported I-Xe ages for Bjurbolle L4 [6], Semarkona LL3.0 [7], Chainpur LL3.4 [8, 9], Parnallee [10] these collectively form a consistent picture for each type of ordinary chondrites.

The I-Xe ages of NWA267 (H4) and Richardton (H5) chondrules are in good agreement, with the lower metamorphic grade NWA267, slightly older. Ordinary L chondrites Bjurbolle (L4) and Elenovka (L5) follow the same trend: I-Xe ages of the lower metamorphic grade Bjurbolle (L4) chondrules cluster within 1.5 Ma interval while the I-Xe ages of individual Elenovka (L5) chondrules differ by 27 ± 10 Ma. A similar trend in the I-Xe ages is observed in the LL3.0 – LL3.6 meteorites, with chondrules of higher metamorphic grade being younger and characterized by apparently longer evolution times between closure in high- and low-temperature iodine host phases (Figure 1).

With a new calibration for the absolute age of the Shallowater reference based on experimental observations [5] and a broad range of comparisons of I-Xe ages with those provided by other chronometers [11, 12], the absolute I-Xe ages of the oldest chondrules (Semarkona) fall into the time interval for CAI formation 4567.2 ± 0.6 Ma [13], and could reflect chondrule formation, as was suggested by Swindle [7], rather than alteration. In this case the chondrules formed simultaneously with CAI’s or shortly thereafter (uncertainties for old Semarkona ages are rather high). Krot et al. [14] argued the entire range of I-Xe ages in the type 3 ordinary chondrites reflects long aqueous alteration.

Clearly, chondrule type should be considered when question of primary or secondary origin of I-Xe ages is addressed. With this in mind, each chondrule intended for the comparison I-Xe – Pb-Pb study was separated into a few fragments. Thus, different fragments from the same chondrule could be analyzed by I-Xe and Pb-Pb chronometers, with one fragment saved for the mineralogical studies and identification of iodine host phases by in situ laser extraction. Fragments designated for I-Xe analyses were irradiated by thermal neutrons in evacuated quartz ampoules. The Xe isotopic composition in each chondrule was measured in step-wise extractions following the same protocol to ensure proper comparison of the results.

Saratov chondrule #1

Saratov #1 is a porphyritic chondrule, with euhedral olivine phenocrysts, surrounded by microcrystalline mesostasis. The apparent isochron corresponds to an age 4551.0 Ma, –12.2 ± 0.9 Ma younger than the Shallowater standard. Since olivines do not contain radiogenic xenon, the apparent I-Xe age of this Saratov chondrule probably reflects a secondary event, recorded in mesostasis. The I-Xe isochron begins at 1300 °C. Most of the iodine, converted into radiogenic 128Xe after neutron irradiation, is released in the low temperature extraction steps, suggesting redistribution of iodine during secondary metamorphic events.

<table>
<thead>
<tr>
<th>weight, mg</th>
<th>age, Ma</th>
<th>129Xe 10^{-12} cm^3STP/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>1.08</td>
<td>-12.2 ± 0.9</td>
</tr>
<tr>
<td>#2</td>
<td>1.54</td>
<td>0.02 ± 0.9</td>
</tr>
</tbody>
</table>

Saratov #2 is a nonporphyritic radial pyroxene chondrule. According to Gooding and Keil [15] this type most clearly preserves the original tensile surface of the molten chondrule. The apparent isochron corresponds to an age 4563.2 ± 0.9 Ma, same as the Shallowater standard. Most of the radiogenic 128Xe and 129Xe are correlated, apparent isochron formed by extraction temperature steps starting from 1300 °C.
The I-Xe ages of Saratov chondrules form a consistent picture when considered together with the I-Xe ages of Elenovka L5 and Bjurbole L4 (Fig.1). The more pristine Saratov chondrule #2 is older than chondrule #1 and in good agreement with the older ages of Bjurbole and Elenovka.

The I-Xe chronometer mostly reflects secondary processes. If so, I-Xe ages of chondrules indicate longer or multiple secondary processes for higher metamorphic grade meteorites. Older chondrule ages cluster tightly at 1.8 ± 1.8 Ma after CAIs and are consistent with Pb-Pb and Al-Mg estimations of the time of chondrule forming event. For the Pb-Pb chronometer, this conclusion is based on the high-precision Pb-Pb ages but for CAI’s and chondrules from different meteorites [13]. Recent 26Al/26Mg data indicate possible simultaneous formation of CAI’s and chondrules in Allende [16].

The cluster of older I-Xe ages indicates that these may well provide the chondrule formation time, but exact knowledge of the iodine carrier phase is required.

Acknowledgments: This work was supported by NASA grant NAG5-12776. We thank University of Missouri Reactor staff for the irradiation of SLC-15 samples.