IF THE LATE HEAVY BOMBARDMENT ON THE MOON WAS A TERMINAL CATACLYSM, WHAT ARE SOME IMPLICATIONS FOR MARS? Sean C. Solomon\(^1\) and James W. Head III\(^2\).
\(^1\)Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, scs@dtm.ciw.edu; \(^2\)Department of Geological Sciences, Brown University, Providence, RI 02912.

Introduction. The late heavy bombardment on the Moon has variously been attributed to the tail of a more or less monotonically declining population of impactors in the inner solar system or to the so-called terminal cataclysm [1], a pronounced interval of greater impact flux at \(~3.8-3.9\) Ga than either subsequently or between that time and the final stages of planetary accretion ending around \(~4.5\) Ga [e.g., 2]. Although this question has not been settled definitively, recent dynamical modeling has added to the arguments in favor of some form of terminal cataclysm. It is therefore worth considering seriously the consequences of that hypothesis for the geological evolution of other bodies in the inner solar system. Here we present such an evaluation for Mars.

Arguments Favoring a Cataclysm. The earliest arguments for a terminal lunar cataclysm were based on the clustering of ages of impact-breciated highland samples between \(3.8\) and \(3.9\) Ga [1-3]. The difficulty attributing this clustering to resetting of ages by a few relatively young basin-forming impacts [2] and the lack of impact melts older than \(~3.9\) Ga in lunar meteorites, a more random sampling of lunar material than the Apollo or Luna collections [4], strengthen the case for a cataclysm but do not prove it.

Radiometric dates are available for only a few of the frontside lunar basins, but a strong case can be made on the basis of those data and stratigraphic arguments that the youngest \(~15\) lunar impact basins at least \(300\) km in diameter [5] formed within the \(100\)-My period \(3.80-3.90\) Ga [3] and perhaps within a shorter interval bracketed by those ages. Although earlier orbital dynamical simulations were regarded as consistent with a monotonically decaying population of impactors in the inner solar system [6], more recent simulations — which include the effects of collisions, extend for longer integration times, and are constrained by lunar basin ages — suggest instead that the declining bombardment model is inconsistent with the lunar cratering record [7].

Dynamical Models for a Cataclysm. Two dynamical hypotheses have recently been put forward to account for a terminal lunar cataclysm. One is based on the suggestion that the era of accretion of the inner planets (following the Moon-forming impact and the impact postulated to have stripped much of Mercury’s mantle) yielded five planetary bodies [8]. For suitable choices of initial orbital semi-major axis and eccentricity the fifth planet may have been long-lived but unstable on a timescale of \(~700\) My and thereafter lost. Perturbation of such a planet into an eccentric orbit could have scattered main belt asteroids into resonances or Mars-crossing orbits [8].

An alternative hypothesis is that the gas-giant planets originally formed between \(5\) and \(15\) AU from the Sun, but interactions with planetesimals scattered inward from an outer disk of primordial material caused Saturn to pass through the \(1:2\) mean motion resonance with Jupiter [9-11]. This event increased the eccentricities and inclinations of Jupiter and Saturn, pushed Uranus and Neptune outward, and destabilized the planetesimal disk, contributing to the late heavy bombardment. The new orbital configurations of the major planets also caused secular resonances to sweep across the main asteroid belt, adding another population of impactors at the same time period [11]. Observational support for the idea that the main asteroid belt was a significant contributor to the late heavy bombardment comes from the demonstration that the size distribution of craters on the highlands of the Moon, Mars, and Mercury matches the size distribution of objects in the asteroid belt, whereas craters on younger solar system surfaces have a distinct size distribution similar to that of near-Earth asteroids [12].

A Cratering Cataclysm on Mars? Both of the above dynamical hypotheses for the late heavy bombardment of the Moon would have also produced an intense pulse of basin formation and smaller crater formation on each of the inner planets, including Mars.

The most obvious implication for Mars is that most, and perhaps all, of the large preserved basins would date from the limited time interval \(~3.8-3.9\) Ga. This statement would extend to basins substantially to fully buried by younger sedimentary and volcanic materials and now discernible only from their signatures in surface topography [13,14] or radar sounding [15,16]. A corollary is that the density of basins and craters on surfaces older than \(~3.8-3.9\) Ga could not be

1636.pdf

LPS

LPS

LPS