
KEEPING UP WITH THE LUNAR METEORITES – 2008.  R. L. Korotev1, A. J. Irving2, and T. E. Bunch3, 
1Campus Box 1169, Dept. of Earth and Planetary Sciences, Washington University, Saint Louis MO 63130; 2Dept. 
of Earth & Space Sciences, University of Washington, Seattle, WA 98195; 3Dept. of Geology, Northern Arizona 
University, Flagstaff, AZ 86011; korotev@wustl.edu 

 
The number of lunar meteorites has increased by 9 

to a total of about 55 in the last year. We have obtained 
compositional data by INAA (instrumental neutron ac-
tivation analysis ) for 197 subsamples (20–30 mg each) 
of 29 lunar meteorite stones since our last reports here 
[1–5]. In Table 1 we present mass-weighted mean con-
centrations of some key elements.  

New Data Confirm Previously Known or Sus-
pected Pairings. Our samples of Dhofar 081 and Dho-
far 910 are compositionally indistinguishable from each 
other. As we noted earlier [6], our sample of Dhofar 
280, which is presumably paired with Dhofar 081/910 is 
different. The analysis of Dhofar 081 of [7] on a large 
mass (0.41 g), however, is intermediate (3.0% FeO, 0.6 
µg/g Sm), suggesting that the meteorite is heterogene-
ous and our small sample of Dhofar 280 is anomalous.  

Dhofar 490 and Dhofar 1084 [6] are composition-
ally indistinguishable from each other (i.e., subsamples 
overlap). DaG 1042 is compositionally indistinguish-
able from DaG 262 and DaG 996 [6].  

We have analyzed samples of seven stones from dif-
ferent sources that are compositionally indistinguishable 
from NWA 2995 (Table 1; O’s in Fig. 1). The meteorite 
is a heterogeneous, fragmental breccia [8] consisting of 
subequal proportions of feldspathic and mafic (pre-
sumably mare) material with some KREEP-like lithic 
component. NWA 2995 et al. is compositionally most 
similar to Yamato 983885 (Z) and, to a lesser extent, 
Dhofar 1180 (3), but different in detail.  

Subsamples of NWA 4483 (¢) overlap in composi-
tion with those of NWA 3163 ($) [9], although our 
sample of NWA 4483 is a bit more feldspathic on aver-
age than our sample of NWA 3163. The stones are 
paired. 

Possible Launch Pairings. An unnamed mare ba-
salt from the Sahara is compositionally and texturally 
indistinguishable from the LAP mare basalts from Ant-
arctica, i.e., LAP 02205 et al. [10]. The meteorites are 
almost certainly launch paired. 

 Regolith breccia NWA 4884 is compositionally in-
distinguishable from QUE 94281 and appears to be an-
other stone in the launch-pair group that also includes 
Yamato 793274/981031 [11] and, possibly, EET 
87521/96008 [12].  

Although texturally different, NWA 2998 (#) and 
Dhofar 081/280/910 (8) are nearly identical in com-
position. The two meteorites are the most feldspathic of 
lunar meteorites (85–90% normative plagioclase). They 
may be launch paired but, given that they are so feld-
spathic, the compositional similarity may just be a coin-
cidence. 

Compositionally and texturally, impact-melt breccia 
NWA 4932 (&) is similar to SaU 300 (S). Both derive 

from mafic anorthosite with low Sm/Sc [13].  
Other New Data. Neither new lunar meteorite from 

Antarctica is obviously paired with any other from Ant-
arctica (symbols AGLMQPY¥Z in Fig. 1). Tiny GRA 
06157 (G, 0.8 g) is at the low-FeO, low-Sm end of the 
range of FLMs (feldspathic lunar meteorites). Composi-
tionally, it is most similar to texturally different NWA 
482 (= in Fig. 1). LAR 06638 (L) is a more typical FLM 
but is still more feldspathic than most FLMs from Ant-
arctica. We observe little difference in composition be-
tween the light clasts and dark matrix in LAR. Overall, 
the composition is most similar to Dhofar 490/1084 (9) 
and NWA 2200 (@) [6].  

Despite its distinct petrography, NWA 5000 (£) is a 
typical FLM in composition and not obviously paired 
with any other NWA lunar meteorite [14]. NWA 4819 
(%) is an FLM that differs from others of similar FeO in 
being richer in incompatible elements. In this regard it 
resembles some feldspathic breccias from the Apollo 
missions. NWA 4936 (©) is an FLM with even greater 
concentrations of incompatible elements. With 6.1% 
FeO and 6.2 µg/g Sm, it is the first lunar meteorite that 
could pass for a sample of regolith from Apollo 16.  

NWA 4898 is a new mare basalt [15] with a unique 
composition, one at the low-FeO (17%) end of the 
range for mare basalts (17–23%). REE concentrations 
(Fig. 2) most closely match those of Yamato 793885, 
but the new meteorite is otherwise distinct.  

We analyzed a mass of Calcalong Creek >3 times 
that of the previous analysis [16], but obtain a similar 
mean composition. Subsamples vary considerably (8.2–

Figure 1.  X = FLM’s not mentioned in text; all others are men-
tioned; key in Table 1. Meteorites from Antarctica are circled. 
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11.7% FeO, 6.6–10.6 µg/g Sm) but there is no correla-
tion of incompatible elements with “mafic” elements 
(Fe, Sc, Cr), indicating that simple “plagioclase dilu-
tion” is not the cause of the variation in incompatible 
elements as it is in many brecciated lunar meteorites. 

With 4.7% FeO and 0.75 µg/g Sm Kalahari 008 (K) 
is a typical FLM. For Kalahari 009, a basaltic breccia, 
we obtain only 16.4% FeO (8 subsamples range from 
14.0% to 17.7%) compared to 18.5% reported by [17]. 
As others have noted [17,18], it has extraordinarily low 
concentrations of incompatible elements. Concentra-
tions of trivalent REE are so low that pyroxene and pla-
gioclase, not phosphates, are the major carriers of the 
incompatible elements. Eu2+ carried in the plagioclase 

leads to a positive Eu anomaly and the heavy REE are 
carried mainly by pyroxene (Fig. 2). 
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Figure 2.  Rare earth elements in Kalahari 008 & 009 and NWA 4898.

NWA 4898

Caveat emptor. We previously reported that the “re-
golith breccia” lithology of Dhofar 287 “is highly dis-
similar in composition to the basalt lithology … and, in 
fact, to any Apollo regolith.” [2]. Further investigation 
reveals, however, that the analyzed sample does instead 
have the composition of a howardite, so we must con-
clude that the sample we acquired from a dealer as 
“Dhofar 287B” [19] was not, in fact, a sample of lunar 
meteorite Dhofar 287.  

This work was funded in part by NASA grant 
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Table 1. Results of INAA – Mass-weighted mean concentrations of N 
subsamples of each stone, with total analyzed mass. *Preliminary data. 
Data for QUE 94281 from [20]. 

 

 plot Na2O, % FeO, % Sc, ppm Cr, ppm Ni, ppm Sm, ppm Eu, ppm Th, ppm mass, mg N 
Calc. Creek C 0.434 9.66 22.3 1260 113 8.59 1.056 3.95 208 11 
DaG 996 0.357 4.25 7.81 618 187 1.21 0.776 0.44 234 9 
DaG 1042 2 0.342 4.31 7.69 643 294 1.12 0.738 0.45 204 8 
GRA 06157* G 0.36 3.6 5.5 550 90 0.66 0.84 0.2 57 2 
Dhofar 280 0.352 3.57 6.92 460 103 0.900 0.776 0.39 103 4 
Dhofar 081 0.326 2.75 4.80 372 77 0.324 0.751 0.08 252 8 
Dhofar 910 

8 
0.328 2.50 4.45 323 49 0.322 0.761 0.08 227 10 

NWA 2998 # 0.344 2.67 4.89 356 60 0.416 0.761 0.13 224 8 
NWA 2200 @ 0.330 3.95 6.95 504 175 1.09 0.796 0.40 209 10 
LAR 06638* L 0.34 3.9 6.7 560 270 1.2 0.82 0.4 282 10 
Dhofar 490 0.323 3.89 6.61 488 250 1.28 0.754 0.43 98 4 
Dhofar 1084 9 0.344 4.00 6.93 525 250 1.33 0.787 0.44 135 5 
Kalahari 008 K 0.561 4.67 10.9 710 60 0.747 1.014 0.17 278 9 
Kalahari 009 none 0.485 16.4 53.2 2880 <150 0.603 0.479 0.06 265 8 
NWA 2995 O 0.467 9.80 19.3 1560 217 4.66 1.045 1.90 246 8 
  pair 1  O 0.475 9.70 18.3 1580 184 4.63 1.097 1.57 253 8 
  pair 2  O 0.447 9.58 18.7 1510 194 3.89 1.045 1.38 210 7 
  pair 3  O 0.463 11.7 22.0 1920 156 4.58 1.053 1.51 148 6 
  pair 4*  O 0.43 11.0 22. 1800 200 3.7 0.96 1.2 119 4 
  pair 5*  O 0.50 9.4 18. 1600 200 5.1 1.12 1.7 168 6 
  pair 6*  O 0.48 9.5 18. 1600 200 5.9 1.20 2.4 54 2 
  pair 7*  O 0.46 10.9 20. 1700 200 4.6 1.03 1.8 60 2 
Y-983885 Z 0.365 8.56 19.4 1490 530 4.15 0.831 2.10 107 9 
Dhofar 1180 3 0.384 9.22 26.8 1040 130 2.84 0.899 0.90 196 9 
NWA 3163 $ 0.288 5.84 12.6 1025 38 0.489 0.658 0.10 304 10 
NWA  ¢ 0.292 5.01 11.2 890 54 0.526 0.682 0.12 314 10 
LAP, 6 stones none 0.373 22.0 59.2 2140 <200 7.53 1.22 2.06 1237 37 
unnamed NWA none 0.371 21.7 59.7 2330 <200 7.13 1.15 1.98 199 8 
NWA 4819 % 0.363 7.03 13.0 1420 288 3.36 0.824 1.50 275 9 
QUE 94281 none 0.396 13.3 28.9 1780 295 3.17 0.839 1.03 464 28 
NWA 4884 none 0.365 13.7 30.1 2090 161 3.06 0.786 0.93 181 6 
NWA 4898 none 0.296 17.2 65.4 3020 <180 4.55 0.997 0.44 133 6 
SaU 300 S 0.329 7.8 17.9 1470 440 1.23 0.631 0.53 321 11 
NWA 4932* & 0.31 8.6 20. 1510 600 1.2 0.65 0.5 210 6 
NWA 4936* © 0.50 6.1 9.0 800 680 6.2 1.4 2.0 178 6 
NWA 5000* £ 0.43 6.4 10. 920 860 1.4 0.9 0.4 296 9 
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