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Volumetric dissipation within satellites is typically as-
sumed to be viscoelastic and is calculated using the Love num-
berk2 and quality factorQ [1]. However, observations of the
plumes and “tiger stripes” at Enceladus [2] have led to sugges-
tions that tidal dissipation may primarily be accomplished by
shear-heating along individual faults [3]. This style of dissi-
pation has a different functional form to the usual viscoelastic
formula. In particular, the eccentricity damping timescale will
differ, which may have important implications if Enceladus’s
eccentricity is time-dependent [4,5].

We assume that tidal stressesσ are capable of moving
faults to a depthd. Hered = σ/ρgf where the denominator
is the overburden pressure resisting fault motion,ρ is surface
density,g is gravity andf is the coefficient of friction. The
tidal strain ratėε depends on orbital parameters and the Love
numberh2 and is linearly proportional toσ. For active faults
of total lengthLtot and separated by an average distancew,
the total frictional heating on the faultṡW depends on the fault
depth and mean shear velocity, and is given by

Ẇ =
ε̇3Ltotwµ′2

2ρgfn2
(1)

whereµ′ (units: Pa) relates stress to strain andn is the mean
motion of the satellite. Note that here we are neglecting the
contribution from viscous shear heating, which is generally
comparable to the frictional contribution [6], and any volu-
metric dissipation in the interior.

Substituting in for the tidal strain rate [7] we obtain

Ẇ = n7e3h3
2
Ltotwµ′2c3
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wherec is a constant (1.55),G is the universal gravitational
constant and̄ρ is the bulk density. This expression has a
different functional form to the standard expression for tidal
dissipation, which depends onk2/Q, e2 andn5 [1].

In the absence of external torques, the rate of change of
semi-major axisa and eccentricitye of a satellite are linked.
Dissipation in the satellite results in a reduction ina; con-
servation of angular momentum then allows the change in
eccentricitye to be determined:

de

dt
= −1− e2
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a
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wheremp andms are the mass of the primary and satellite, re-
spectively. This expression may be integrated if the functional
form of Ẇ is known.

Figure 1 shows the effect of applying both the conven-
tional dissipation (a) and the shear-heating (b) calculations to
a body with present-day characteristics appropriate to Ence-
ladus. The main difference of the latter approach is that the

effective eccentricity damping timescale is larger by 70%. The
dissipation thus falls off more slowly as a function of time (but
more rapidly as a function of eccentricity). A lower rate of
eccentricity reduction makes it more likely that oscillatory be-
haviour [4] can occur.
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Figure 1: Evolution ofa,e and heat production ratėW with
time, calculated using equation (3). Values are normalized to
initial values (0.238×106 km, 0.0045 and 1 GW, respectively)
appropriate to present-day Enceladus. Panel a) gives evolution
using conventional tidal dissipation formula; panel b) gives
evolution using shear-heating formula (equation 2). Effective
eccentricity damping timescales are 10.2 Myr and 17.5 Myr,
respectively. Here it is assumed that the characteristics of the
satellite (especiallyh2) do not vary in time.
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