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Introduction: Presolar SiC and Si3N4 grains 

enriched in 28Si are referred to as type-X and most 
likely formed in ejecta from Type II supernovae. They 
represent only about 1% of presolar SiC from the 
Murchison (CM2) chondrite [1], and even less (0.3%) 
from the Qingzhen (EH3) chondrite [2]. Our previous 
analysis of SiC-X grains from Qingzhen revealed a 
bimodal distribution of δ29Si and δ30Si values, with 
about 25% of the grains being more depleted in 29Si 
relative to 30Si [2]. These grains have been referred to 
as X2 to distinguish them from the larger population of 
identified SiC-X grains (here called X1). 

We continued the study of these Qingzhen SiC and 
Si3N4 X grains in order to determine whether the 
difference between the subtypes is reflected in the 
isotopic compositions of other elements. Twenty-four 
grains previously measured for Si, C, and N isotopes [2] 
were relocated. Their Mg, Ca, and Ti isotopic 
compositions were determined with the NanoSIMS.  

Experiments and Results: Of these 24 X grains, 6 
are Si3N4, 6 are SiC-X2, and 12 are SiC-X1. All grains 
were examined in an SEM and with energy dispersive 
X-ray spectrometry. In contrast to mainstream and 
other X SiC grains, these grains often show a 
significant presence of oxygen. Analysis of oxygen 
isotopes of a few X grains revealed a heterogeneous 
distribution of oxygen (possibly the result of the 
polycrystalline structure of X grains) but normal 
isotopic ratios. Thirteen SiC-X and 3 Si3N4 grains 
located away from Mg-rich grains were analyzed for 
Mg isotopes. Fifteen SiC-X and 4 Si3N4 grains were 
then measured for 40,44Ca, 46,47,49Ti, and 51V.  

All of the grains measured for Mg isotopes show 
large 26Mg excesses from the decay of 26Al. SiC-X1 
grains have high inferred 26Al/27Al ratios from 0.15 to 
0.38, two grains have smaller ratios (Fig. 1; one X1 
grain didn’t have its C ratio measured). In contrast, 
only 2 out of 5 X2 grains have 26Al/27Al > 0.1, while 
the other 3 X2 grains have 26Al/27Al ratios lower than 
0.1 (Fig. 1). All 3 Si3N4 grains have high 26Al/27Al 
ratios (0.18-0.23), similar to X1 grains. One of them 
didn’t have its C ratio measured. 

SiC-X2 grains have lower 27Al+/28Si+ ratios (0.020-
0.065, except for a grain with 0.18 and another grain 
with an unusually high value of 1.09) than SiC-X1 
(0.08-0.9) and Si3N4 grains (0.06-0.11). The most Al-
rich X2 grain (QZR5A-551-24) exhibits a unique depth 
profile. Relative to 28Si, there is a region with a drop in 

24,25Mg and 27Al and an increase of 26Mg, indicative of 
an 26Al-rich subgrain (with an inferred 26Al/27Al ratio 
of 0.20, compared to 0.08 of the whole grain; see Fig. 
1). Another special grain is QZR4-482-20 (X1), 
containing almost pure 26Mg with a 26Mg/24Mg ratio of 
4.5×103. 

 
Figure 1: Plot of inferred 26Al/27Al vs 12C/13C. All 

plotted errors are 1σ. 

 
Figure 2: Plot of inferred 44Ti/48Ti vs δ29Si/28Si. 
Four out of 11 SiC-X1 grains have 44Ca excesses, 

probably due to the decay of 44Ti (t1/2 = 60 y). Under 
the assumption that the whole 44Ca excess is due to 
44Ti decay, we infer 44Ti/48Ti ratios between 3.3 × 10-3 
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and 1.3 × 10-2 (Fig. 2). The 44Ca/40Ca ratios of all 4 
Si3N4 grains are solar within analytical errors. Two out 
of 4 X2 grains have the largest 44Ca excesses 
(δ44Ca/40Ca of 4980‰ and 7580‰), with inferred 
44Ti/48Ti ratios of 0.07 and 2.6, respectively. The other 
2 X2 grains show no observable 44Ca excess. 

Titanium-49 excesses were found in 8 SiC-X1 
grains (δ49Ti/48Ti from 180 to 1135‰, see Fig. 3). 
Inferred 49V/51V ratios are 0.71-2.7, if the 49Ti excesses 
are the result of the decay of 49V (t1/2 = 337d). Two of 
the X2 grains have large 49Ti excesses (δ49Ti/48Ti from 
1140 to 2580‰, see Fig. 3), with inferred 49V/51V 
ratios of 1.2 and 4.2, respectively. The 4 measured 
Si3N4 grains show no detectible 49Ti anomalies. 

 
Figure 3: Plot of δ49Ti/48Ti vs 51V/48Ti ratio. 
 
The Si3N4 grains have narrow ranges of 40Ca/28Si 

(3.4×10-2) and 48Ti/28Si (2.0×0-4), in contrast to X1 and 
X2 SiC grains (40Ca/28Si of 3.2×10-4 to 2.4×10-2 and 
48Ti/28Si of 2.1×10-5 to 9.0×10-3). It appears that the X2 
grains have lower 40Ca/48Ti ratios (0.6-16) than X1 
grains (1.4-60, except for one grain with 40Ca/48Ti = 
0.7). The Si3N4 grains have the highest 40Ca/48Ti ratios 
(53-500). 

Discussion: All of the X grains measured here 
have large 26Mg excesses from the decay of 26Al. The 
inferred 26Al/27Al ratios are high, up to 0.38, in 
agreement with values observed in SiC-X grains from 
Murchison and other chondrites [3,4].  

The depth profile of X2 grain QZR5A-551-24 and 
the variable inferred 26Al/27Al ratios suggest that it is 
an assemblage of subgrains that formed in different 
regions of heterogeneous supernova ejecta. In 
comparison to SiC grains of other types, X grains are 
commonly observed to be assemblages of very small 
(<100 nm) SiC crystals. Depth profiles with 29,30Si-

poor and 29,30Si-rich regions were reported in a few SiC 
grains [5]. Alternatively, QZR5A-551-24 could have 
condensed as it passed through heterogeneous 
supernova ejecta. Its uniquely high and relatively 
constant Al/Si ratio is consistent with such a scenario. 

One interesting X1 grain, QZR4-482-20, has 
almost pure 26Mg. Its 24Mg/28Si ratio is lower by a 
factor of 50-2000 than the other SiC-X grains. This 
extremely low Mg concentration suggests special 
temperature conditions during the condensation of this 
grain. 

The excess of 44Ca is likely the result of the decay 
of 44Ti; however, we cannot absolutely rule out 
nucleosynthetic Ca contributions, since we did not 
measure 42,43Ca. We find a correlation between the 
inferred 44Ti/48Ti ratios and δ29Si (Fig. 2), similar to 
previous reports [3-5]. One of the three most Ti-rich 
grains (48Ti/40Ca=1.6) has a normal 44Ca/40Ca ratio. On 
the other hand, grain QZR5A-117-3 with the largest 
44Ca excess (δ44Ca/40Ca = 7580‰) has a very low 
48Ti/40Ca ratio of 0.06. The inferred 44Ti/48Ti ratio is 
2.6±0.9, higher than any ratio observed before [4, 5]. 
However, as already mentioned, we cannot exclude a 
nucleosynthetic origin of the 44Ca excess in this Ti-
depleted grain.  

The SiC-X grains show a general correlation 
between the 49Ti excesses and the V/Ti ratios (Fig. 3), 
evidence for the incorporation of live 49V [6]. The 
slope of the regression line (or 49V/51V ratio) is 0.78, 
higher than the slope of 0.18 found previously [6]. 
However, some of the 49Ti excesses could be due to 
neutron capture in the He/C and C/O SN zones. 

The two subtypes of SiC-X grains show some 
differences in both isotopic and elemental ratios of Mg, 
Ca, and Ti. SiC-X1 grains tend to have higher ratios of 
26Al/27Al, 27Al/28Si and 40Ca/48Ti than the X2 grains. 
We also observed that the 26Al-poor grains have no 
detectible 44Ca excess, with the exception of QZR5A-
117-3, which has an unusually high inferred 44Ti/48Ti 
ratio. As discussed above, this may be of 
nucleosynthetic origin. 
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