CROSS SECTIONS FOR PRODUCING SOME LIGHT-NOBLE-GAS NUCLIDES. Robert C. Reedy¹, Institute of Meteoritics, MSC03-2050, Univ. New Mexico, Albuquerque, NM 87131 USA <rreedy@unm.edu>.

Introduction: Good models for making cosmogenic nuclides, usually theoretical calculations, are needed for the best interpretations of measurements in solar-system samples. Important inputs to the theoretical calculations are the cross sections for making a nuclide from its major target elements. Protons make almost all nuclides produced by solar energetic particles and a fraction of the nuclides made by galactic-cosmic-ray (GCR) particles [1]. Most GCR-produced nuclides are made by neutrons, and proton cross sections are often used for neutrons or as a basis for estimating neutron cross sections.

Proton cross sections were recently compiled and evaluated for the long-lived radionuclides ¹⁰Be, ¹⁴C, ²⁶Al, ³⁶Cl, ⁴¹Ca, and ⁵³Mn [2]. These cross sections are much better than those used previously, especially over a decade ago, when there were very few cross-section measurements. These proton-induced cross sections will also be used with some new measurements of neutron-induced cross sections [J. Sisterson et al., this meeting] to get better excitation functions for GCR production of cosmogenic nuclides.

Isotopes of the noble gases, such as ³He and ²¹Ne, are often used in cosmogenic-nuclide studies, such as for determining exposure ages and for estimating how much a sample was shielded from the cosmic rays. Cross sections for making ³He, ²⁰Ne, ²¹Ne, and ²²Ne were compiled, and cross sections as a function of energy from threshold to many GeV were evaluated for all major target elements. For ³He and ²²Ne, these evaluated cross sections include the decay of 12.32 year ³H and 2.60 year ²²Na, respectively.

Measured Cross Sections: Most target and product pairs only have cross sections measured for protons. Measurements from earlier compilations, private communications, and theses were used. The international cross-section compilation called Cross Section Information Storage and Retrieval System (CSISRS) at the National Nuclear Data Center of the Brookhaven National Laboratory was queried. Papers that cited cross-section measurements were examined for other measurements. Minor sources are not given here, but some can be found in older papers.

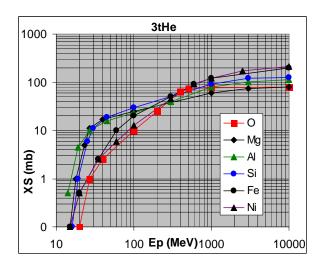
^{3T}He. The symbol ^{3T}He refers the sum of the independent cross sections for making only the nuclide ³He plus those for making only ³H. Almost all measured cross sections for ³He do not include the decay of ³H, so cross sections for making both ³He and ³H were compiled. For reactions with oxygen, the measured

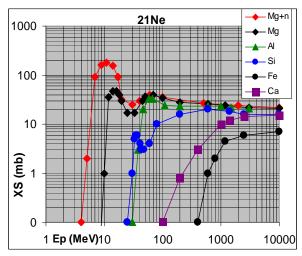
cross sections of [3] for making ^{3T}He to those for ³H were 2.12, and that ratio was used with seven ³H cross sections from CSISRS for ^{3T}He cross sections. There are no measurements below 225 MeV. The cross sections for O(p,x)^{3T}He are not well determined.

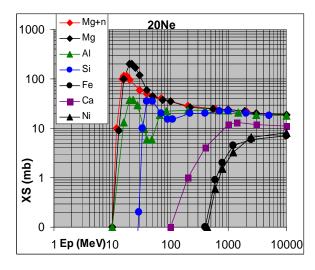
Only for Al and Fe are there many measurements for making both ³He and ³H. From those measurements and from a few cases for Mg and Si, it was determined that, at a given proton energy, the cross section for making ³He is about 1.2 times that for making ³H. Thus, the data used to get evaluated cross sections for making ^{3T}He from Mg, Al, Si, Fe, and Ni are 2.2 times the cross sections for only ³H and 1.83 times the independent cross sections for making ³He. As can be seen from the data for proton reactions with Al shown in Fig. 1, both sets are consistent.

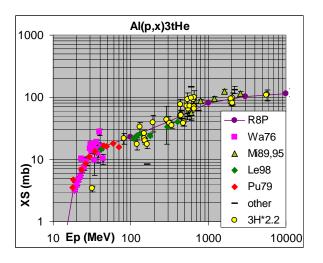
For Mg, Al, and Si, most measurements were from [4-7]. The CSISRS database was used for Fe and Ni. There are very few measurements for Na and Ca.

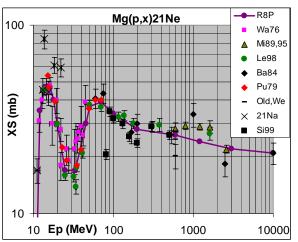
 $^{20-22T}Ne$. Most measurements reported cross sections for all 3 neon isotopes and included ^{22}Na decay in their ^{22T}Ne cross sections. The main sources for proton-induced reactions were [4-9]. There are fewer data and more scatter for Si. The measurements and evaluation for the $Mg(p,x)^{21}Ne$ are shown in Fig. 1.


CSISRS has 3 sets of measurements for making Ne isotopes from Mg with neutrons of energies from 5 to 19 MeV that are in good agreement. The curve for the $Mg(n,x)^{21}Ne$ reaction in Fig. 1 used those data connected to the proton results above 60 MeV.


Results: The compiled cross sections for these 4 nuclides were plotted as a function of energy for each major target element. Usually most measurements were in good agreement. A smoothed curve that was roughly a smooth average of the better measurements was usually adopted. The evaluated cross sections (called R8P) for these 4 nuclides are plotted in Fig. 1.


Acknowledgments: This work was supported by NASA's CCP program and NSF's CRONUS project.


References: [1] Reedy R. C. and Arnold J. R. (1972) *JGR*, 77, 537-555. [2] Reedy R. C. (2007) *LPS XXXVIII*, Abstract #1192. [3] Kruger S. T. and Heymann D. (1973) *Phys. Rev. C*, 7, 2179-2187. [4] Walton J. R. et al. (1976) *JGR*, 81, 5689-5699. [5] Michel R. et al. (1995) *Nucl. Instrum. Meth. B*, 103, 183-222. [6] Leya I. et al. (1998) *Nucl. Instrum. Meth. B*, 145, 449-458. [7] Sisterson J. M. et al. (1999) *LPS XXX*, Abstract #1283. [8] Baros F. and


Regnier S. (1984) *J. Physique*, 45, 855-861. [9] Pulfer P. (1979) Thesis, Univ. Bern, Switzerland.

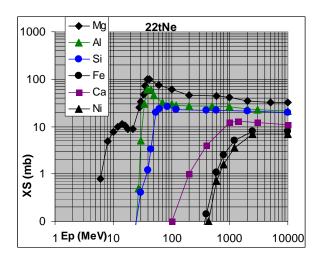


Fig. 1. Evaluated cross sections for making 3 He and Ne isotopes from major target elements by incident protons and for $Mg(n,x)^{20,21}Ne$ are plotted as a function of energy. Also shown are the data and evaluations for the $Al(p,x)^{3T}He$ and $Mg(p,x)^{21}Ne$ reactions.