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Introduction:  Heterogeneous 26Mg isotopic dis-

tributions among coexisting mineral phases in refrac-
tory inclusions, such as Ca, Al-rich Inclusions (CAIs), 
and chondrules, have been reported [1].  Isotopic imag-
ing techniques now enable investigation of isotopic 
distributions within individual mineral grains [e.g, 2, 
3].  Two leading instruments: IMS-1270 with SCAPS 
[2] and NanoSIMS [3], are capable of approximately 
5 ‰ precision and 0.5 µm spatial resolution O isotopic 
imaging.  Isotope imaging within a crystal or of a 
boundary between different crystals is useful for con-
straining the thermal histories of these objects. 

Here we report the results of a Mg isotopic imaging 
study of anorthite from an Allende CAI, HN3-1c, util-
izing the JSC NanoSIMS 50L ion microprobe.  We 
evaluate the measurement conditions, the instrumental 
mass fractionation factor, and the precision and accu-
racy of the isotopic image through the analysis of a 
Madagascar hibonite standard with known Mg isotopic 
ratios.  To understand the initial 26Al distributions 
when CAI formed and later re-dstribution of 26Mg dur-
ing metamorphism, it is desirable to acquire high pre-
cision Mg isotope images with sub-micrometer spatial 
resolution within and among the coexisting mineral 
phases. 

Sample:  HN3-1 is a typical coarse-grained Type-
B1 CAI from Allende CV3 chondrite.  HN3-1c is large 
(~1cm) and consists of melilite mantle (Åk30-60), small 
spinel grains, anorthite and fassaite [4].  The O isotopic 
characteristics in those minerals of the CAI show typi-
cal O isotope ratios of δ17,18O ~ 0 ‰ for anorthite and 
melilite, and δ17,18O ~ -40 ‰ for fassaite and spinel [5, 
6].  The initial 26Al/27Al ratio for the CAI has been 
reported to be (3-5)×10-5 [7]. 

Experimental:  Al-Mg isotopic measurements 
were performed with the JSC NanoSIMS 50L ion mi-
croprobe.  Each of the samples and standards were 
measured both by spot analysis (5 x 5 µm raster) and 
by isotopic imaging.  In spot analyses, the Mg isotopes 
were measured in a multi-detection with three different 
electron multipliers (EMs) while 27Al signal was de-
tected with the adjacent Faraday cup.  The sample was 
coated with a 30 nm Au film to mitigate electrostatic 
charge on the sample surface.  Other measurement 
conditions were same as our previous work [8]. 

Terrestrial madagascar hibonite standard with 
known Mg isotopic ratios (δ25Mg = -5.82 ‰, δ26Mg = -

11.36 ‰) was used to correct for instrumental mass 
fractionation, including the differing sensitivities of 
EMs.  We also determined the 27Al+/27Al++ sensitivity 
factors using hibonite (27Al/24Mg = 45.34) and labra-
dorite (27Al/24Mg = 254.67). 

We acquired Mg isotopic images of 5 separate ar-
eas within the anorthite crystal in the HN3-1c CAI.  
The images were acquired by rastering a 130-200 pA, 
400 nm O- primary ion beam over an area of 15 x 15 
µm.  Secondary ions of 27Al++, 23Na+, 24Mg+, 25Mg+, 
26Mg+, and 54Fe+ were counted with electron multipli-
ers in multidection.  Analyses were performed at a 
mass resolving power of > 8,000, sufficient to resolve 
Mg hydride interferences from 25Mg and 26Mg.  Each 
imaging run consisted of 30-50 repeated scans ac-
quired over a ~2 hour period.  Isotopic images were 
processed using custom-written software developed in 
the Interactive Data Language (IDL).  Data were cor-
rected for EM dead time (44 ns) and QSA effect fol-
lowing standard procedures.   

We determined the reproducibility of δ25Mg, δ26Mg, 
26Mg excess and 27Al/24Mg ratios obtained by isotopic 
imaging by measurements of hibonite and labradorite 
standards.   Images of standards were divided 8 by 8 
bins (~2 x 2 µm in a 15 µm field of view) and Mg iso-
topic ratios, 26Mg excess, and Al/Mg ratios of these 64 
bins were calculated.  The 1σ precision for 27Al/24Mg 
ratio was approximately 9.5 %, determined from statis-
tical error of the 27Al++ and 24Mg intensities and the 
error of the 27Al+/27Al++ sensitivity factor.  The 1σ un-
certainties for δ25Mg, δ26Mg and 26Mg excess were 4.5, 
6.0 and 7.5 ‰, respectively.  The overall reproducibil-
ity of the 26Mg excesses measured in 4 isotopic images 
of the terrestrial hibonite and labradorite standards 
were 1.5 and 2.0 ‰, respectively. 

Results and Discussion:  Isotopic measurements 
of HN3-1c anorthite performed by spot analysis indi-
cate clear evidence for extinct 26Al.  The 26Mg excess 
corresponds to (26Al/27Al)0 = (3.4 ± 0.4) (2σ) x 10-5, 
close to the canonical value and good agreement with 
previous work [8]. 

Figure 1 shows typical Mg isotopic images of anor-
thite in the HN3-1c CAI.  As we acquired images of all 
Mg isotopes, Al++, Na and Fe simultaneously, we can 
readily determine Mg isotopic ratios of micron-size 
region in the field of view by our image processing 
software.  We observed relatively homogeneous distri-
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bution of δ25Mg.  In contrast, δ26Mg was heterogene-
ous, ranging from 20 to 340 ‰ (Figs 1b and c).  Clear 
evidence of 26Mg excess due to 26Al decay was ob-
served by Mg isotope imaging technique. 

We calculated Al-Mg evolution diagram of 2 x 2 
µm bins within the Mg isotope images (Fig 1).  All 
bins show 26Mg excesses corresponding to the 
(26Al/27Al)0 = 3 to 5 x 10-5.  The excess 26Mg of these 
bins is well correlated with the 27Al/24Mg ratios for the 
range of 100-1200 (Fig 2). 

Several small Mg-rich grains appear in the Al/Mg 
ratio image of the anorthite crystal (Fig 1a).  Small 
unresolved inclusions may commonly occur in spot 
analyses, potentially affecting both isotopic and ele-
mental ratio measurements.  We evaluated the effect of 
these small Mg-rich grains on the isotopic measure-
ments by calculateing the (26Al/27Al)0 values for (1) the 
entire image (2) the Mg-rich areas (27Al/24Mg = 100-
300) and (3) the Al-rich area (27Al/24Mg ~300-1200); 
(Fig 2).  These data fall on a slope of (3.4 ± 0.4) (2σ) x 
10-5 which is the same value we obtained by spot 
analysis. 

Thermal diffusion of Mg may cause a resetting of 

the initial distributions of 26Mg excesses in anorthite 
[9].  Small (tens of µm) anorthite gains are especially 
susceptible to this effect, as has been observed in some 
CAIs having low initial 26Al/27Al values [e.g., 1, 8].  
Yurimoto et al. [10] showed that the disturbed initial 
26Al/27Al values could be explained by Mg diffusion 
during thermal metamorphism, assuming an initially 
canonical 26Al/27Al ratio, metamorphic temperature of 
400˚C and a duration of several Myr. 

We evaluated whether the Mg isotopic composition 
of this CAI was affected by thermal metamorphism by 
comparing our results with the previously published 
model [10].  Our data fall within the expected range of 
values (Fig 2, gray area; 10) resulting from Mg diffu-
sion in anorthite.  The heterogeneous distributions of 
26Mg excesses we observed at 2 µm scale  may be ex-
plained by thermal metamorphism. 
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Figure 2. Al-Mg evolution diagram of anorthite in the 
HN3-1c.  Two solid lines represent initial 26Al/27Al 
with 5 x 10-5 (upper one) and 3 x 10-5 (lower one).  
Gray area represents the simulated 26Mg re-
distributions by diffusion during metamorphism. 

Figure 1.(a) 27Al++/24Mg ratio image. Italic numbers 
indicate 27Al/24Mg ratio calculated from 27Al+/27Al++ 
sensitivity factor (b) δ25Mg image (c) δ26Mg image (d) 
excess 26Mg image calculated from images b and c 
using: 26Mg excess = δ26Mg – 2 x δ25Mg. Field of 
view of images are 15 x 15 µm. Image was smoothed 
by convolving each pixel with a 0.4 x 0.4 µm bin. 
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