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Introduction:  Global-scale datasets, preferably 

with nearly uniform coverage are important elements 
of many geophysical studies of the planets and their 
moons. However, uniformly resolved data are not al-
ways available, for example, determination of the grav-
ity field of the Earth’s moon suffers from this problem 
because the data depend upon line-of-sight tracking of 
a spacecraft’s radio signal. Due to the synchronous 
rotation of the Earth’s moon, direct determination of 
the far side gravity field is not possible with a single 
spacecraft resulting in a dataset with highly spatially 
variable quality [1]. An analogous situation exists 
where particular spacecraft orbits (i.e., highly elliptical 
ones) may also provide non-uniform data coverage or 
resolution, especially if the data depend upon space-
craft altitude (e.g., gravity, magnetic fields).  The nec-
essarily elliptical orbit with periapse limited to the 
northern hemisphere of Mercury in the future orbital 
phase of the MESSENGER mission is an example of 
the latter situation. Higher surface spatial resolution 
geophysical data will be limited to the northern hemis-
phere.  

Spherical harmonics are commonly used to 
represent planetary geophysical datasets [e.g. 2-7].  
Among the primary advantages of spherical harmonics 
are their compact and convenient form as well as the 
availability of powerful spectral analysis techniques. 

In contrast to the ideal case, highly non-uniform 
data distributions reveal disadvantages associated with 
spherical harmonic representations. Indeed, they best 
represent data only for an expansion up to a degree and 
order appropriate for the data that are least resolved. 
This essentially truncated expansion (relative to the 
areas with high data resolution) introduces aliasing that 
results in an inaccurate representation of the data. Fur-
ther, the relative truncation of the expansion amounts 
to discarding data from the more resolved regions. 
Unfortunately, spherical harmonics are relatively in-
flexible to local variations in data resolution. 

The global support basis for spherical harmonics is 
one source of their disadvantages with highly non-
uniform data.  However, non-uniformly resolved data 
may be more accurately represented by a model repre-
sentation with local support. Local bases, especially 
those that rely on meshes produced by Delaunay trian-
gulation, are adaptable to large variations in resolution 
[8]. Notably, interpolation support can be concentrated 

where resolving power is highest. Furthermore, locally 
supported basis functions can accommodate non-
uniform, incomplete, and regional data distributions 
[8]. 

Spherical Basis Splines:  Spherical basis splines 
(B-Splines) have been increasingly used to solve geo-
physical problems [see 9-12], particularly in seismolo-
gy. A 2-D model on a sphere with a local cubic B-
spline basis is parameterized in terms of geodesic dis-
tance on a triangular grid of knot points. The knot 
points are control points through which the piecewise 
polynomial (i.e. the spline) must pass. The normalized 
cubic B-spline functions are centered on N knots points 
i=1, 2,…, N on the surface of the planet. Each basis 
function fi( ,φ) depen s on the distance Δ from the ith 
knot point 
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where 2∆௜଴ is the range of support for the ith basis 
function [13]. The geophysical values on the surface 
can be represented by the system of equations 
ܿ௜ሺߠ, ߮ሻ ൌ ܽ௜ ௜݂ሺߠ, ߮ሻ, where c are the data points, a 
are the model coefficients, and f is the matrix of B-
spline functions. This system can be solved directly if 
knot points are coincident with the data points, i.e. f  is 
square, or with a least squares norm minimization oth-
erwise. Spherical B-splines also have continuous first 
and second derivatives [9, 13] which are often impor-
tant for geophysical modeling. 

Lunar Data:  The Clementine mission provided a 
global topographic dataset of the Moon. However, 
direct knowledge of the gravity field data determined 
by Lunar Prospector and earlier missions from Doppler 
radio tracking is constrained by line-of-sight consid-
erations. The tidally locked rotation of the Moon pre-
vents direct radio tracking of a single spacecraft on the 
far side, so the far side gravity field can only be deter-
mined through indirect methods [1]. The resolution of 
the gravity on the nearside is therefore much greater. 
We use the Goddard Lunar Topography Model 2 
(GLTM 2) expanded up to degree and order 72 [5] as 
the basis for a test dataset that mimics a dichotomy in 
data resolution between two hemispheres. We con-
struct the test data set from a globally complete set of 
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data so we can control variable resolving power be-
tween the two sides. 

Preliminary Results:  Using the test data, we can 
compare the relative accuracy of spherical harmonic 
and B-spline representations of uniformly and non-
uniformly distributed data at a range of resolutions. 

The RMS misfit between the data and both spheri-
cal harmonic and spline representations with for un-
iformly resolved input data are nearly zero within ma-
chine precision, however the convenience and speed of 
solution for spherical harmonics make it a more likely 
choice for nearly uniform data. 

Our irregular test datasets have a higher data reso-
lution on the nearside of the Moon and a lower resolu-
tion data distribution on the far side. Within each he-
misphere the data are uniformly distributed. 

B-splines with data at knot points.  The solution to 
a B-spline problem with coincident data and knot 
points is solved exactly as a linear system of equations. 
Even with a large disparity in resolution, the RMS mis-
fit for the B-spline model is zero, within numerical 
precision. The solutions for non-uniformly resolved 
data using spherical harmonics are quite inaccurate for 
very non-uniform data (Figure 1) as a least-squares 
solution is necessary and the degree and order to which 
the model is represented is limited by the lower resolu-
tion hemisphere. Thus, for the case where the knot 
points are placed at each data point, there is a clear 
advantage to the use of B-splines over spherical har-
monics. 

B-splines with a spherical tessellation of knots.  
The number of knot points may be practically limited 
by computational capability making direct solutions 
untenable. In this case we use a tessellation of evenly 
spaced points on a sphere, produced by an optimization 
method where the sum of 1/r between all pairs, r being 
geodesic distance, is minimized [14]. 

When data and knot points do not coincide a least-
squares solution is implemented. The misfits for non-
uniformly resolved data with an evenly spaced distri-
bution with nearly as many knots as data, was very 
low, yet not quite zero (Figure 1). When a fewer num-
ber of knots (appropriate for a lower resolution data 
set) is used, aliasing is introduced (Figure 1), yet the 
misfit of the lower resolution tessellation is still less 
than that of spherical harmonics. This demonstrates 
that splines on a regular tessellation of knot points can 
also be more accurate when dealing with non-uniform 
data distributions. 

Knot point distribution.  The selection of knot 
points is the most important factor which determines 
the accuracy of a B-spline model. Thus, optimal distri-
butions of knot points will produce the most accurate 
spline representations. An automatic knot point selec-

tion algorithm can be used [8] which provides an op-
timal distribution of knot points fit to local resolution. 

Discussion and Future Directions:  Spherical 
splines appear to have a notable advantage in accuracy 
when dealing with non-uniformly resolved planetary 
datasets on surfaces and may alleviate some of the 
disadvantages of spherical harmonic representations. 
Future work will focus on investigating the suitability 
of splines for gravity and magnetic modeling, particu-
larly in light of such geophysical datasets’ altitude de-
pendence. 
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Figure 1: The RMS misfit of both basis models of non-
uniformly distributed test data sets, where the degree to 
which the resolution is appropriate on the farside of the 
test data is shown on the bottom axis. The nearside 
resolution was kept constant at a degree of 26. The 
misfits for all uniform resolution models and direct 
solutions are nearly zero and are not shown. The top 
blue line shows the misfit for spherical harmonics. The 
middle red line is for a low resolution tessellation ap-
propriate for the resolution of the farside. The bottom 
orange line is for a high resolution tessellation with n-1 
knots where n is the number of data points. The maxi-
mum relief in our test data was 5.8 km. 
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