LA-MC-ICPMS LU-HF ISOTOPES IN LUNAR ZIRCONS: RELIABILITY OF PEAK STRIPPING PROTOCOL Dianne J. Taylor¹, Kevin D. McKeegan¹, Edward D. Young¹ and T. Mark Harrison^{1,2}, ¹Dept. of Earth and Space Sciences & IGPP, UCLA, Los Angeles, CA, 90095, dtaylor@ess.ucla.edu. ²Research School of Earth Sciences, Australian National University, Canberra, A.C.T. 0200 AUSTRALIA

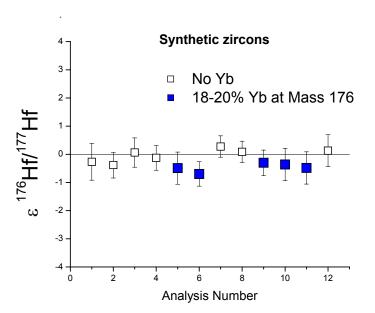
Introduction: The timescale for the cooling and crystallization of the lunar magma ocean has not been firmly established, yet it is essential for understanding the thermal history and the nature of silicate differentiation of the Moon (and other planetary bodies) as a whole [1]. Towards this end, we have undertaken an in situ LA-MC-ICPMS ¹⁷⁶Lu-¹⁷⁶Hf study of individual lunar zircons of well-determined crystallization (U-Pb) ages returned from the KREEP-rich portion of the Moon by the Apollo 14 mission. Zircons are ideal for this type of study because they concentrate Hf (up to 6 wt%) while excluding Lu (typical ¹⁷⁶Lu/¹⁷⁷Hf for lunar zircons = 0.001). Small deviations in the measured initial ¹⁷⁶Hf/¹⁷⁷Hf of the lunar zircons from the chondritic value allows us to calculate the differentiation age of KREEP. Since KREEP formed after the rest of the magma ocean had crystallized, an age at which KREEP became chemically isolated from the rest of the magma would establish an upper bound for the duration of LMO crystallization.

Unfortunately, laser ablation studies of zircons are complicated by the presence of isobaric interferences at mass 176 (zircons contain the rare earth elements Yb and Lu, resulting in ¹⁷⁶Yb⁺ and ¹⁷⁶Lu⁺ mass interferences with ¹⁷⁶Hf⁺), necessitating a complex peakstripping protocol. Our practice, as reported in [1] has been to use the protocol described by Harrison and coworkers [2] (and see below). Although this technique works well for Hadean zircons, Apollo 14 lunar zircons can contain up to 10 to 100 times the concentrations of heavy REEs compared to terrestrial zircons and therefore correspondingly larger corrections must be made. To establish the accuracy and reproducibility of the peak-stripping methods, we have carried out additional studies at UCLA using synthetic zircons (courtesy of Frank Mazdab, USGS, Stanford Ion Probe Laboratory) doped with either no Yb or ~800 ppm Yb (consistent with that found in lunar zircons).

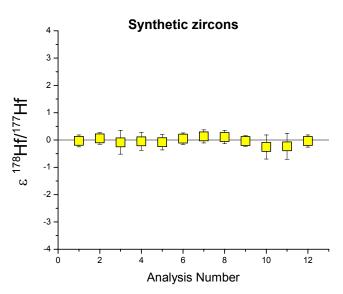
Analytical Protocol: Laser ablation multicollector ICPMS (LA-MC-ICPMS) was done at UCLA using a ThermoFinnigan Neptune plasmasource mass spectrometer coupled to a NuWave excimer laser (λ =193 nm). The laser was operated at a frequency of 3 Hz and fluence of 21-22 J/cm². Each measurement consisted of 50 cycles with 4 second integration time per cycle. Backgrounds were measured prior to each analysis (also 50 cycles) and corrected using the Neptune software. Sixty to 80 μ m diameter spots were ablated in polished, uncoated zircons. Ions of selected masses from 171 to 181 amu were collected simultaneously in 9 Faraday cups (10^{11} Ω resistors).

Peak stripping is accomplished by measuring noninterfered isotope pairs of Yb and Hf (173Yb/171Yb and ¹⁷⁹Hf/¹⁷⁷Hf) from which instrumental mass bias correction factors for Yb and Hf (β_{Yb} and β_{Hf} , respectively) are calculated by using an exponential mass fractionation law based on the accepted values for these ratios (173Yb/171Yb is normalized to 1.12345 [3] and 179 Hf/ 177 Hf is normalized to 0.7325 [4]). The fractionation factors (β 's) thus calculated are applied to the other isotope ratios in the same run in which they are measured. The amount of ¹⁷⁶Yb⁺ to be stripped from the measured ¹⁷⁶Hf⁺ is calculated from the massfractionation corrected ¹⁷³Yb⁺ intensity, normalized to ¹⁷⁶Yb/¹⁷³Yb as determined by [3]. Similarly, the amount of ¹⁷⁶Lu⁺ to be stripped is calculated from the measured ¹⁷⁵Lu⁺, normalized to ¹⁷⁶Lu/¹⁷⁵Lu determined by [5] and assuming that Lu follows the same mass fractionation law as Yb.

The accuracy of the mass bias fractionation factor determined from ¹⁷⁹Hf/¹⁷⁷Hf is checked by monitoring within-run ¹⁷⁸Hf/¹⁷⁷Hf, a second pair of stable, non-interfered isotopes of Hf.


Results: For the synthetic zircons containing 2 wt% HfO2 and no Yb or Lu (and therefore not requiring any peak stripping) the reproducibility of the final 176 Hf/ 177 Hf ratio is within $\pm 0.46\epsilon$ (2 s.d.). Analyses of zircons containing ~800 ppm Yb, with a consequent 18-20% ¹⁷⁶Yb⁺ correction at mass 176 (consistent with lunar zircons) show ¹⁷⁶Hf/¹⁷⁷Hf values, on average, 0.48\varepsilon units below the mean of the no-Yb zircons. This indicates that the Yb interference is slightly overcorrected for, but still accurate to within sub-epsilon levels. The stable, non-interfered 178Hf/177Hf for all synthetic zircons (with and without Yb) is found to be reproducible to within 0.14ε (2 s.d.) showing that the in-run mass bias fractionation factor for Hf is welldetermined in both doped and undoped samples.

Also, the final ¹⁷⁶Hf/¹⁷⁷Hf result obtained for the well-characterized zircon standard, Mudtank, is compared to solution ICPMS results [6]. We found that the weighted mean of 13 analyses over two analysis


days deviated from the accepted value by -0.36 ± 0.28 (2 s.e.) ϵ .

Conclusions: In-situ measurement of Hf isotope compositions of zircon by LA-ICPMS can be made accurately to a level of \sim 0.5e even in samples which contain high (up to 10,000 times chondritic) levels of heavy rare earth elements. This accuracy level is commensurate with typical precisions achieved for 60 to 80 μ m diameter analysis spots. Measurements of ϵ_{176Hf} in KREEP-rich lunar zircons reported previously [1] and containing up to \sim 800 ppm Yb appear to be precise and accurate at the sub-epsilon level.

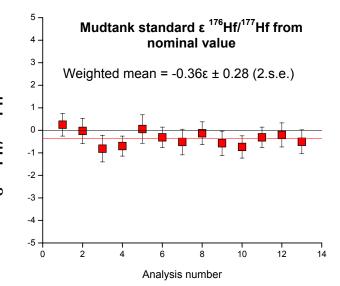

References: [1] Taylor D.J. et al. (2007) LPSC, 163-164. [2] Harrison T.M. et al. (2005) Science 310, 1947-1950. [3] Thirlwall M.F. and Anczkiewicz R. (2004) International Journal of Mass Spectrometry, 235, 59-81. [4] Blichert-Toft J. and Albarede F (1997) Contributions to Mineralogy and Petrology 127, 248-260. [5] Chu N.C. et al. (2002) Journal of Analytical Atomic Spectrometry, 17, 1567-1574. [6] Woodhead, J.D. and Hergt J.M. (2005) Geostandards and Geoanalytical Research 29, 183-195.

Fig. 1. 176 Hf/ 177 Hf for synthetic zircons containing 2 wt% HfO₂, with no Yb and ~800 ppm Yb. The mean of the zircons with Yb is 0.48 ϵ below the Yb-free zircons.

Fig. 2. Stable 178 Hf/ 177 Hf for all synthetic zircons. One standard deviation from the mean is 0.14 ϵ .

Fig. 3. The reliability of the dual peak-stripping procedure is monitored by analysis of Mudtank, a terrestrial zircon with well-characterized Hf isotopes