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Introduction: What would a self-gravitating, rotating
sand pile look like if every slope on the surface was at the an-
gle of repose? Many asteroids are likely gravitationally bound
aggregates of collisional fragments [1]. Gravitational aggre-
gates are often called “strengthless,” however internal friction
and interlocking between particles can maintain topography
that is out of hydrostatic equilibrium. One can observe that
loose piles of aggregated particles, like sand, have slopesthat
are maintained at what is called theangle of repose, φ, where
typically 20

◦ . φ . 30
◦ with respect to horizontal [e.g.,2,3].

The purpose of this study is to explore the topographic limits
of a hypothetical asteroid composed entirely of loose sand.
What would a self-gravitating, rotating sand pile look likeif
every slope on the surface was at the angle of repose?

Other attempts have been made to establish the shapes of
angle of repose-limited rubble pile asteroids using a variety
of techniques [4–9]. Here I calculate uniform density, three-
dimensional objects for which the surface at every point is at
an angleφ relative to the local horizontal as defined by the sum
of the gravitational and centripetal acceleration vectorsat that
point. This can be expressed by the following equation:

N̂ · ĝeff + cos φ = 0, (1)

whereN̂ is the unit normal vector at a point on the surface,
andĝeff is the effective gravitational unit vector at the same
point, which includes contributions from the gravitational and
the centripetal acceleration vectors. Ifφ = 0, then Eq. (1)
describes a fluid in hydrostatic equilibrium, and analytical
solutions for isolated bodies were found by Maclaurin and
Jacobi [e.g.,10]. For the case whereφ 6= 0 everywhere, no
closed-form analytical solutions are known. To solve this
problem I have developed an iterative numerical technique
that has been implemented in a code calledSandyroid.

Non-rotating solutions: The term “angle of repose” refers
to the magnitude of the slope, but the sign of the slope along
a profile can abruptly change at “cusps.” Cusps can be either
point or line cusps and can be have a “positive” or a “negative”
orientation. Because the number and configuration of cusps is
unconstrained, only a small subset of possible solutions were
explored. The search for solution shapes was limited to angles
of repose in the range of20◦ ≤ φ ≤ 30

◦ and to five different
cusp configurations.

Three cusp configurations yielded solutions, which have
been named “Donut,” “Top,” and “Hourglass.” Solutions were
found for Donut withφ . 21

◦, for Top with φ . 22
◦, and

for Hourglass withφ . 28
◦. Figure 1 shows non-rotating

solution shapes for the three configurations considered here.
The surface angles of the final solution meshes are within
approximately±1

◦ of the target surface angles.
Rotating solutions: Sandyroidis able to calculate solution

shapes with rotation about the x-, y-, or z-axes. Only solutions
that have rotation about a stable axis are considered here.

The first rotational case considered for which solutions

Figure 1: Highest-angle, non-rotating constant surface angle
solutions fora) Donut (φ = 21

◦), b) Top (φ = 22
◦), andc)

Hourglass (φ = 28
◦). Three different orientations are shown

for each of the three configurations, with the top row corre-
sponding to a view of the top of the objects, the bottom row
corresponding to a view of the front of the objects, and the
middle row corresponding to an intermediate view. Colors
represent the deviation of the surface angle of the facets from
the target surface angle, computed usingPolygrav. Each sur-
face mesh contains 56400 triangular facets.

were found is the “Oblate Donut,” which has the same cusp
configuration as Donut, but with rotation about the z-axis. By
varying the rotation rate as well as the angle of repose, a di-
rect comparison can be made with Holsapple (2001) [5], who
explored equilibrium configurations of rubble piles using an
internal yield stress criterion, rather than the purely geomet-
rical criterion chosen for this study. The two ratios of object
dimensions are given as:

α = c/a,

β = b/a, (2)

where the dimensions are defined to be the maximum extent
of the object along a principal axis, anda ≥ b ≥ c.

The results of several Oblate Donut solution shapes deter-
mined bySandyroidare compared to the equilibrium config-
urations determined by Holsapple (2001) for oblate spheroids
in Figure 2. Note thatSandyroidis capable of reproducing
a portion of the classic Maclaurin spheroid curve when given
φ = 0

◦. For φ > 0
◦ Sandyroidproduces a lower value ofα

for any given rotation rate than the limit derived by Holsapple
for his oblate spheroid solutions.

Sets of z-axis rotating solutions to the Top configuration,
called “Oblate Top” were also found. For the Hourglass config-
uration, the body must be rotated about either its x- or y-axis
to achieve stable principal axis rotation for a wide range of
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Figure 2: Relationship between rotation rate and body aspect
ratio. The points representSandyroidsolutions for several
configurations, angles of repose, and rotation rates. Also plot-
ted are curves of the required angle of internal friction de-
termined by Holsapple (2001) [5] (only theσx = σy < σz

branch is shown). The curve forφ = 0
◦ is the classic Maclau-

rin spheroid, which is partially reproduced bySandyroid. For
each configuration shown here, the most rapidly rotating so-
lution thatSandyroidwas able to calculate is plotted. Profile
generation fails either when a singularity develops in the seed
body or the centripetal acceleration becomes greater than the
gravitational acceleration at some point along the profile.

rotation rates.
Sandyroidwas unable to converge on solutions for either

Donut or Top with x- or y-axis rotation. Attempts were also
made to produce Jacobi ellipsoids usingSandyroidby sup-
plying it with highly elongated initial seed shapes and setting
φ = 0

◦, but these attempts were not successful. The inability
of Sandyroidto produce Jacobi ellipsoids may indicate that
some solutions to Eq. (1) are not numerically stable inSandy-
roid. As Figure 1 demonstrates, the shapes thatSandyroidwas
capable of producing are objects whose entire surfaces have
slopes that are constant within±1

◦.
Comparisons between angle of repose-limited bodies

and observed small bodies: Unlike fluid bodies, gravita-
tional aggregates can maintain a range of equilibrium shapes.
The solution shapes produced bySandyroidrepresent limiting
cases. Because the angle of repose-limited solutions described
here are idealized mathematical constructs, some caution is
warranted when comparisons are made to the shapes of natu-
ral bodies. Nevertheless, some intriguing similarities can be
found between the shapes presented here and real small bodies
that have been observed.

Radar imaging of the near-Earth asteroid 1999 KW4 re-
vealed that it has an equatorial ridge that is similar to the
positive equatorial cusps found on both Donut and Top [11].
The Saturnian satellite Atlas shows a striking similarity to both
Donut and Atlas, especially in the equatorial region, as shown

in Figure 3. It has been proposed that the equatorial region
of Atlas is composed of ring material that preferentially falls
onto the satellite’s equator [12–14]. If this is the case, then
the shape of Atlas may indicate that the loose ring material
may be at or near the angle of repose. The Hourglass bodies
somewhat resemble contact binaries.

Figure 3: a),b) Two views of the Saturnian moon Atlas as
imaged by the Cassini Imagine Science Subsystem (ISS) nar-
row angle camera.c),d) Views of Donut with no rotation and
φ = 21

◦ with similar orientation and lighting as the Atlas im-
ages.e),f) Views of Top with no rotation andφ = 22

◦ with
similar orientation and lighting as the Atlas images. Atlasim-
ages courtesy NASA/JPL-Caltech.

Summary: The shapes produced bySandyroidare ide-
alized mathematical constructs that represent limiting cases.
These shapes are not unique, and as the failure ofSandyroidto
produce Jacobi ellipsoids demonstrates, there may be otherso-
lution shapes that it is incapable of producing. Nevertheless,
the shapes that are produced bySandyroidare robust in the
sense that the discretized solution objects have surfaces that
are computed to be at a constant angle relative to their local
gravitational vector, within the limits of mesh resolution.
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