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Introduction: What would a self-gravitating, rotating
sand pile look like if every slope on the surface was at the an-
gle of repose? Many asteroids are likely gravitationallyiimb
aggregates of collisional fragments [1]. Gravitationadj@g
gates are often called “strengthless,” however internetidn
and interlocking between particles can maintain topogyaph
that is out of hydrostatic equilibrium. One can observe that
loose piles of aggregated particles, like sand, have slibyas
are maintained at what is called thegle of reposgp, where
typically 20° < ¢ < 30° with respect to horizontal [e.g.,2, 3].
The purpose of this study is to explore the topographic mit
of a hypothetical asteroid composed entirely of loose sand.
What would a self-gravitating, rotating sand pile look like
every slope on the surface was at the angle of repose?

Other attempts have been made to establish the shapes of

angle of repose-limited rubble pile asteroids using a warie
of techniques [4-9]. Here | calculate uniform density, &ire
dimensional objects for which the surface at every pointis a
an anglep relative to the local horizontal as defined by the sum
of the gravitational and centripetal acceleration vecabithat
point. This can be expressed by the following equation:
N-g.s5+cos¢ =0, 1)
whereN is the unit normal vector at a point on the surface,
andg.y is the effective gravitational unit vector at the same
point, which includes contributions from the gravitatibaad
the centripetal acceleration vectors. gf= 0, then Eq. (1)
describes a fluid in hydrostatic equilibrium, and analytica
solutions for isolated bodies were found by Maclaurin and
Jacobi [e.g.,10]. For the case whefe# 0 everywhere, no
closed-form analytical solutions are known. To solve this
problem | have developed an iterative numerical technique
that has been implemented in a code caatdyroid
Non-rotating solutions: The term “angle of repose” refers
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Figure 1. Highest-angle, non-rotating constant surfaggean
solutions fora) Donut ( = 21°), b) Top (¢ = 22°), andc)
Hourglass ¢ = 28°). Three different orientations are shown
for each of the three configurations, with the top row corre-
sponding to a view of the top of the objects, the bottom row
corresponding to a view of the front of the objects, and the
middle row corresponding to an intermediate view. Colors
represent the deviation of the surface angle of the facets fr
the target surface angle, computed udhodygrav. Each sur-
face mesh contains 56400 triangular facets.

were found is the “Oblate Donut,” which has the same cusp
configuration as Donut, but with rotation about the z-axig. B
varying the rotation rate as well as the angle of repose, a di-
rect comparison can be made with Holsapple (2001) [5], who
explored equilibrium configurations of rubble piles using a
internal yield stress criterion, rather than the purelyrgetb
rical criterion chosen for this study. The two ratios of albje

to the magnitude of the slope, but the sign of the slope along dimensions are given as:

a profile can abruptly change at “cusps.” Cusps can be either

point or line cusps and can be have a “positive” or a “negative
orientation. Because the number and configuration of cissps i
unconstrained, only a small subset of possible solutiorre we
explored. The search for solution shapes was limited toesngl
of repose in the range @D° < ¢ < 30° and to five different
cusp configurations.

Three cusp configurations yielded solutions, which have
been named “Donut,” “Top,” and “Hourglass.” Solutions were
found for Donut with¢ < 21°, for Top with ¢ < 22°, and
for Hourglass with¢ < 28°. Figure 1 shows non-rotating
solution shapes for the three configurations consideree. her
The surface angles of the final solution meshes are within
approximately+1° of the target surface angles.

Rotating solutions: Sandyroids able to calculate solution
shapes with rotation about the x-, y-, or z-axes. Only sohgi
that have rotation about a stable axis are considered here.

The first rotational case considered for which solutions

a=c/a,

B= b/a7 (2)
where the dimensions are defined to be the maximum extent
of the object along a principal axis, and> b > c.

The results of several Oblate Donut solution shapes deter-
mined bySandyroidare compared to the equilibrium config-
urations determined by Holsapple (2001) for oblate splsroi
in Figure 2. Note thaBandyroidis capable of reproducing
a portion of the classic Maclaurin spheroid curve when given
¢ = 0°. For¢ > 0° Sandyroidproduces a lower value @f
for any given rotation rate than the limit derived by Holskepp
for his oblate spheroid solutions.

Sets of z-axis rotating solutions to the Top configuration,
called “Oblate Top” were also found. For the Hourglass config
uration, the body must be rotated about either its x- or p-axi
to achieve stable principal axis rotation for a wide range of



Lunar and Planetary Science XXXIX (2008)

Internal yield stress criterion a = b > ¢
Oblate Spheroid ¢ = 0°
Oblate Donut ¢ = 10°

Eod e a0

Oblate Donut ¢ = 20°
Oblate Top ¢ = 10°
Oblate Top ¢ = 20°

Hourglass (x
7T

1500 kg m~3)

o

Period (hr) (p

0.0 I IR
0.0 0.2

Figure 2: Relationship between rotation rate and body aspec
ratio. The points represer@andyroidsolutions for several
configurations, angles of repose, and rotation rates. Atste p
ted are curves of the required angle of internal friction de-
termined by Holsapple (2001) [5] (only the, = 0, < 02
branch is shown). The curve fér= 0° is the classic Maclau-

rin spheroid, which is partially reproduced Bandyroid For
each configuration shown here, the most rapidly rotating so-
lution thatSandyroidwas able to calculate is plotted. Profile
generation fails either when a singularity develops in texs
body or the centripetal acceleration becomes greater tiean t
gravitational acceleration at some point along the profile.

rotation rates.

Sandyroidwas unable to converge on solutions for either
Donut or Top with x- or y-axis rotation. Attempts were also
made to produce Jacobi ellipsoids usiBgndyroidby sup-
plying it with highly elongated initial seed shapes andisgtt
¢ = 0°, but these attempts were not successful. The inability
of Sandyroidto produce Jacobi ellipsoids may indicate that
some solutions to Eq. (1) are not numerically stabl8amdy-
roid. As Figure 1 demonstrates, the shapes 8aatdyroidwvas
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in Figure 3. It has been proposed that the equatorial region
of Atlas is composed of ring material that preferentiallijsfa
onto the satellite’s equator [12—14]. If this is the casenth
the shape of Atlas may indicate that the loose ring material
may be at or near the angle of repose. The Hourglass bodies
somewhat resemble contact binaries.

Figure 3: a),b) Two views of the Saturnian moon Atlas as
imaged by the Cassini Imagine Science Subsystem (ISS) nar-
row angle camerec),d) Views of Donut with no rotation and

¢ = 21° with similar orientation and lighting as the Atlas im-
ages.e),f) Views of Top with no rotation and = 22° with
similar orientation and lighting as the Atlas images. Attas

ages courtesy NASA/JPL-Caltech.

Summary: The shapes produced I8andyroidare ide-
alized mathematical constructs that represent limitingesa
These shapes are not unique, and as the failusanflyroicto
produce Jacobi ellipsoids demonstrates, there may besther
lution shapes that it is incapable of producing. Nevertgle
the shapes that are produced ®gndyroidare robust in the
sense that the discretized solution objects have surfhegs t
are computed to be at a constant angle relative to their local
gravitational vector, within the limits of mesh resolution
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