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Atmospheric Entry of Impact Ejecta:  Distal 

ejecta particles from large impacts on the Earth or 
other planets possessing atmospheres lose most of their 
kinetic energy in the atmosphere before deposition on 
the surface.  Such particles are generally small:  Most 
of the distal K/Pg ejecta was in the form of glassy 
spherules about 300 microns in diameter [1], similar in 
size to impact spherules deposited by distant impacts 
in the Archean [2].  The dark parabolae surrounding 
fresh Venusian craters imply particle sizes ranging 
from about 1 micron to 1 cm in diameter [3] ejected to 
ranges of several thousand km from the impact site.  
Entry velocities of such ejecta range from planetary 
escape velocity (11.2 km/sec for the Earth) down to 
just enough speed to heave ejected particles out of the 
atmosphere (about 1.4 km/sec on the Earth). 

Once fast ejecta partiles enter the atmosphre, they 
decelerate to terminal velocity and then drift down-
ward at low speed, perhaps being entrained in density 
currents, before deposition on the surface.  Decelera-
tion in the upper atmosphere initially occurs at very 
high speed, during which aerodynamic friction 
strongly heats the particles, a process first analyzed by 
Whipple [4].  Intense thermal radiation from the hot 
particles, however, keeps them relatively cool:  This 
cooling permits the collection of relatively unscathed 
interplanetary dust particles in the Earth’s atmosphere 
[5, 6]. 

The Aerodynamic Problem:  Quantitative model-
ing of the entry and deposition of impact ejecta re-
quires adequate mathematical expressions for the drag 
and frictional heating of small particles over a wide 
range of both velocity and atmospheric density.  Con-
ventional equations for these quantities assume that 
atmospheric gases can be treated as a continuum.  
However, small particles in the upper atmosphere, 
where most of the high speed deceleration occurs, are 
typically much smaller than the mean free path of gas 
molecules.  As the particles settle through the atmos-
phere the density increases and it becomes necessary to 
treat the particles’ motion through the intermediate 
regime of semi-continous gas down to the continuum 
limit of low speed Stokes flow. 

Over the past year we have been engaged in model-
ing the entry of distal K/Pg ejecta into the Earth’s at-
mosphere.  During this investigation we found that 
there are no generally accepted expressions for drag 
and heat transfer coefficients over the range of condi-
tions we are encountering in our models.  Atmospheric 
entry models by Whipple [4] and Opik [7], however 

revolutionary they were at the time, have long been 
superceded by directly-tested models in the aerospace 
engineering literature [8]. 

We searched the aerospace literature for analytic 
expressions of drag coefficients for spheres over the 
range of conditions relevant for the entry and deposi-
tion of impact ejecta.  Many formulae exist that cover 
only part of the total range, but for modeling purposes 
we needed only one, or a few, formulae that smoothly 
transition into one another.  As is conventional in fluid 
mechanics, these expressions are formulated in terms 
of dimensionless numbers characterizing the flow.  At 
low speeds the Reynolds number Re alone suffices, 
Re = Lv/ν, where L is a relevant dimension (the parti-
cle diameter in our case), v the relative velocity of the 
particle and the atmospheric gases and ν is the kine-
matic viscosity of the gas.  However, at high speeds, 
the Mach number M = v/c, where c is the speed of 
sound in the gas, is also important.  A related factor is 
the Knudsen number, Kn = M/Re, equal to the ratio 
between the particle diameter and the mean free path 
of molecules in the gas. 

Drag Coefficient: The most comprehensive drag 
equation that we found was formulated to express the 
motion of small solid particles in the hot gases stream-
ing out of the nozzle of a solid fuel rocket [9].  How-
ever, this equation for the drag coefficient incorporates 
transcendental functions that become singular in limit-
ing cases and in any case are very slow to evaluate 
numerically.  We thus substituted simpler functions 
that behave well numerically and nevertheless agree 
with Crowe’s equations (and with the extensive data 
sets he cites!) to a precision of better than 0.1%.  An-
other problem that arises is that Crowe expressed his 
drag coefficient in terms of a continuum limit expres-
sion that he does not define explicitly.  In other papers 
in the aerospace literature [10], this limiting expression 
is taken to be the Stokes flow limit at vanishing Rey-
nolds number.  However, using this identification we 
were unable to reproduce Crowe’s low Reynolds num-
ber fit in his Fig 1.  Instead, we found that using a con-
tinuum limit that incorporates low Reynolds number 
deviations from Stokes flow [11] will, in fact, yield the 
correct fit. 

Summarizing our expression for an analytical drag 
coefficient valid over the full range of conditions de-
scribing the entry of small ejecta particles, we have: 
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where γ is the gas specific heat ratio and the incom-
pressible limit drag coefficient is: 
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and the two auxiliary functions G(Re) and H(M) are 
given by: 
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where Tp is the temperature of the particle and Tg is the 
temperature of the gas in the free field. 

Heat Transfer from Hypersonic to Stokes Re-
gime:  In a similar manner we sought improved ex-
pressions for the rate at which heat is transferred both 
to the entering particle and the gas.  Because we are 
using a numerical hydrodynamic simulation of particle 
flow, we require formulae that express both the heat 
transferred to the entering particle, and to the gas itself.  
In the aerospace literature, however, the focus is on 
heat transfer to the particle and the heat transfer coeffi-
cient, the Nusselt number Nu, is given a form that is 
awkward for inclusion in the full energy conservation 
equations in a hydrodynamic computer code.  We thus 
separated the standard equations into two more con-
venient terms. 

The total kinetic energy lost by an entering ejecta 
particle is given by vFD, where FD = 0.5ρgACDv2 is the 
drag force.  The rate of heat transfer Q to a sphere, 
which concatenates both friction and heat conduction, 
is defined in terms of the Nusselt number by 
Q = πLkgNu(Tr-Tp), where kg is the thermal conductiv-
ity of the gas and Tr is the “recovery temperature” of 
the particle [12].  This is the temperature that, if at-
tained by the particle, is such that no heat is exchanged 
with the gas (it is sometimes called the “adiabatic wall 
temperature”).  It is computed from the “recovery fac-
tor” r, defined in 
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where Ts is the stagnation temperature of the gas.  The 
recovery factor r depends on the Prandtl number, but 
its value is within 10% of 1 for air [12], even in free 
molecular flow [13]. 

We decomposed the heat transfer equation, propor-
tional to (Tr-Tp), into a factor proportional to (Tr-Tg) 
and another proportional to (Tp-Tg).  The first factor 

represents heat from compression and friction with the 
gas, while the second is the conventional heat ex-
change between two bodies of differing temperature.  
This allows us to define a friction factor α, the fraction 
of the total energy loss that is transferred into the parti-
cle, given by 
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Of course, the fraction (1-α) of the kinetic energy loss 
is transferred to the gas. 

The Nusselt number itself is given by [14, 15] 
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where the continuum limit of the Nusselt number is 
Nu
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Note that the equation for Nu contains a factor M’, 
which is not the Mach number.  We found that this 
equation, due to Kavanau [15], does not extrapolate 
correctly to the rarefied gas limit, nor is it correct for 
very high Mach number.  However, we found a correc-
tion for this formula by using 
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Using this replacement, the equation behaves correctly 
in both low and high density limits, and over the entire 
range of velocities, from Stokes regime to hypersonic. 

These equations were compared with the results 
from the Whipple model, showing that that Whipple’s 
estimated temperatures are typically a few hundred K 
too high for entry of a 0.5 mm particle at 8 km/sec. 
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