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     Introduction:  Improved remote estimation of lu-

nar soil TiO2 abundance has important implications for 

characterizing lunar mare compositional diversity as 

well as addressing basaltic volcanism [e.g., 1-5].  

Quantifying lunar soil TiO2 abundance with visible to 

near infrared spectral data is commonly achieved by 

relating spectral characteristics of lunar soil samples 

returned by the Apollo and Luna missions to their TiO2 

abundance.  Traditional methods ultilize spectral bands 

and/or band ratios for this estimation [e.g., 2, 4, 6-12], 

while two multivariate data analyssi methods, principal 

component regression (PCR) [13-15] and  partial least 

squares (PLS) regression [15-16] have been recently 

used.  A  difficulty with applying PCR/PLS is to ex-

plain the spectral-compositional relationships, i.e. how 

TiO2-bearing minerals governs the models.  Spectros-

copic analyses of the PLS and PCR eigenfunctions 

(eigenvectors) used in previuos studies [13-14] may 

not be appropriate because PLS differs from PCR in 

the way to derive its spectral eigenfunctions.  As iden-

tification of the mineral causal effect has important 

implications for improving the estimation of lunar soil 

TiO2 abundance, especially for low TiO2 (<4%) sam-

ples [17], here we report the use of PLS regression to 

estimate TiO2 abundance and provide an insightful 

interpretation of PLS results by applying stepwise mul-

tiple regression analysis (SMRA) to the PLS compo-

nents.     

Partial Least Squares (PLS) Modeling:  A sim-

ple PLS model consists of two outer relations and an 

inner relation.  The two outer relations result from ei-

genstructure decompositions of both the matrix con-

taining explanatory variables (i. e., spectral bands) and 

the matrix containing response variables (i. e., soil 

chemical abundance),  while the inner relation links the 

resultant score matrices resulting from the two eigen-

structure decompositions [16, 18]. The inner relation is 

often represented by a multiple linear regression be-

tween the score matrices and the corresponding regres-

sion coefficients are determined via iterative least 

squares minimization [18].  Like PCR used in [13-15], 

PLS assumes that the spectra-composition system of 

interest is driven by a few of dominant factors or com-

ponents and that their corresponding scores can be 

used to predict a response variable; Unlike PCR, how-

ever, PLS has the advantage of determining a small set 

of dominant factors that not only explains the variance 

of the explanatory variable but also has high correla-

tion to the response variable.  The approach to the PLS 

solution can be found in [16, 18].  

Application of PLS to LSCC Dataset:  The Lu-

nar Soil Characterization Consortium (LSCC) group 

generated four sample replicates for each of the 9 mare 

soil samples at the particle size separate: <45, 45-20, 

20-10, and <10 µm.  TiO2 and major mineral (aggluti-

nate, pyroxene, plagioclase, olivine, ilmenite, and vol-

canic glass) abundance of these replicates were deter-

mined.  Besides these major minerals, each subsamples 

also includes other constituents such as unclassified 

and FeS minerals which are represented by the remain-

ing component (RC) here.  The reflectance spectra of 

these replicates measured by the RELAB of Brown 

University [15].     

For PLS modeling the LSCC mare samples were 

used and stratified into two subsets: high-Ti mare soils 

from the Apollo 11 and Apollo 17 sites, and low-Ti 

mare soils from the Apollo 12 and Apollo 15 sites.  

Each subset was split into the training set for training 

PLS models and the validation set for model assess-

ment, i.e. that the TiO2 abundance and reflectance for 

three particle size groups: 45-20, 20-10, and < 10 µm 

was used as the training set, while the data for bulk 

soil, i. e. <45 µm in particle size were used for valida-

tion.  The LSCC reflectance spectra in the spectral 

range 0.4-2.5 µm were resampled into a coarse spectral 

resolution (nominal 10 nm intervals).  The resampled 

spectra were then further converted to absorbance 

spectra by the natural logarithmic operation of each 

spectrum.    

Results:  The root mean squares error (RMSE), 

coefficient of determination (R
2
) resulting from PLS 

modeling of the LSCC mare spectra for estimatingTiO2 

abundance are presented in the following table along 

with the number (#) of PLS factors (PLSF): 

Samples RMSE* R2 PLSF 

Ap12 & Ap15 (low-Ti) 0.043/0.21/8.3% 0.99 8 

Ap11 & Ap17 (hi-Ti) 0.21/0.50/6.3% 0.97 7 

Low-and hi-Ti samples 0.1/0.77/14.04% 0.94 14 

*: the first value is rmse for calibration, and the second and third 

values are rme and relative error for validation; R2 is for calibration. 

Correlation between the PLS estimated and meas-

ured TiO2 abundance is shown in Figure 1 for the low-

Ti mare samples and Figure 2 for the high-Ti samples. 

Discussion: The PLS result (see Table) shows that 

estimated TiO2 has a larger relative error (8.3%) for 

validation on the low-Ti mare samples than that (6.3%) 

for the high-Ti mare samples, but requires more PLS 

factors for the low-Ti dataset than those for the high-Ti 

dataset.  Application of SMRA to the regression of 
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TiO2 abundance against the abundance of seven major 

minerals indicates that the dominant TiO2 -bearing 

minerals are agglutinate, pyroxene and ilmenite for the 

low-Ti samples, but ilmenite and RC are the most im-

portant TiO2-bearing minerals for the high-Ti samples.  

This result is consistent with the interpretation in [1].  

However, these SMRA results are not in agreement 

with the PLS regression results; otherwise, three and 

two PLS factors rather than eight and seven should 

have been used for estimating TiO2 of low- and high-

Ti mare samples respectively.  

  
Figure 1. Correlation between estimated and measured TiO2 for 

low-Ti mare samples. 

 

Figure 2. Correlation between estimated and measured TiO2 for 

high-Ti mare samples. 

 

To address this inconsistence between the number 

of PLS factors and the number of dominant TiO2-

bearing minerals ,  SMRA were used in the regression 

of the spectral score for infidel PLS factors against the 

abundance of TiO2-bearing minerals.  For low-Ti sam-

ples, the SMRA analysis indicates that the 1st PLS 

factor is driven by and positively correlates to aggluti-

nate, pyroxene, plagioclase, ilmenite and RC and the 

2nd is related to pyroxene.  However, the 3rd to 5th 

and 8th factors don't show significant correlation, and 

they represent the effect of physical parameters (e.g. 

particle size).  The 6th and 7th  factors show negative 

correlations to plagioclase and volcanic glass respec-

tively; these two are explained to compensate the ef-

fect of plagioclase on the 1st factor.  This explains why 

low-Ti samples have 3 dominant Ti-bearing minerals 

but 8 PLS factors are required to achieve good Ti esti-

mation. 

Similarly, the SMRA for the high-Ti samples sug-

gests that the 1st PLS factor is driven by and positively 

correlates to agglutinate, pyroxene and ilmenite; the 

2nd PLS is positively related to agglutinate, pyroxene, 

volcanic glass, plagioclase, ilmenite and RC; and the 

3rd PLS factor is positively related to plagioclase and 

ilmenite.  It is evident that for the high-Ti soils sug-

gests that the spectral information of the dominant 

TiO2-bearing ilmenite was distributed across the first 

three PLS factors but the spectral signal for  RC was 

concentrated in the 2nd PLS factor .  For the high-Ti 

samples, SMRA suggests that TiO2 abundance is dri-

ven by ilmenite and RC.  This implies that to compen-

sate the effect of agglutinate, pyroxene, volcanic glass, 

plagioclase on the first two PLS factors and of plagioc-

lase on the 3rd factor, additional PLS factors are re-

quired.  This is why the fourth PLS factor was included 

in the PLS model, which is negatively related to agglu-

tinate, pyroxene, volcanic glass and plagioclase.  How-

ever, the 5th and 7th factors don't show significant 

correlation to mineral abundance and their inclusion be 

due to the effect of physical parameters (e.g. particle 

size).  This explains why the PLS model for high-Ti 

samples needs 7 PLS factors other than 2.  Unlike the 

case for low-Ti samples, the effect of physical property 

is present in the low rank factors for high-Ti soil sam-

ples, implying the effect is not as important as TiO2-

bearing ilmenite.    

Conclusion:  PLS regression was applied to the 

LSCC low- and high-Ti mare samples and resulted in 

high correlation between the estimated and measured 

TiO2.  SMRA was used for qualitative interpretation of 

the PLS factors and demonstrated as an efficient ap-

proach to the interpretation of the PLS spectral-

compositional relationships. 
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