Hasegawa S. Miyasaka S. Tokimasa N. Sogame A. Ibrahimov M. A. Yoshida F. Abe M. Kuroda D.
BRz’ Phase Function of Asteroid 4 Vesta During the 2006 Opposition [#1503]
We show BRz’ phase function of asteroid 4 Vesta during the 2006 opposition. The phase function of 4 Vesta with parameters with HB = 3.93 mag and GB = 0.24, HR = 2.77 and GR = 0.21, and Hz’ = 2.95 and Gz’ = 0.20 were obtained.

Marboeuf U. Petit J.-M. Mousis O.
Thermodynamic Evolution of Planetesimals in the Primordial Edgeworth-Kuiper Belt Induced by Collisions [#1568]
We examine the implications of collisional effects on the physical and chemical differentiation of the planetesimals located in the primitive Edgeworth-Kuiper Belt. Results show changes in the initial composition only in the subsurface layers.

Rietmeijer F. J. M.
Corrected Chemical Signatures in Stardust Glass Reveal Wild 2 Particles that Resemble Matrix Grains of Aggregate IDPs [#1189]
Corrected for an elemental background and aerogel silica, Wild 2 chemical signatures preserved in Si-rich glass show the original petrologic grain properties.

Do Trojan Asteroids Have the Brightness Opposition Effect? [#1391]
Photometric observations of the Trojan asteroids 588 Achilles are presented. The rotation period and the detailed magnitude phase dependence were obtained. We have not revealed any noticeable opposition brightening down to 0.1° of phase angle.

Slyuta E. N.
Gravitational Deformation of Small Solar System Bodies [#1050]
Strength properties of small solar system bodies dependent on their composition vary within an extremely broad range – from 0.002 up to 350 MPa. There are five basic groups of objects dependent on their rheologic properties.

Tikhomirova E. N.
To the Problem of Meteor Streams and Comets Relationship [#1087]
The meteor streams and parent comets are suggested to identify by using the integrals of motion in frame of the averaged perturbed two-body problem. The parent comets of beta-Cancrids and lyambda-Cygnids are 3D and 73P correspondingly.

A Meteorite Dropping Superbolide from the Catastrophically Disrupted Comet C1919Q2 Metcalf: A Pathway for Meteorites from Jupiter Family Comets [#1286]
A meter-sized meteoroid probably produced during the disintegration of comet C1919Q2 Metcalf was observed producing a −18 magn. bolide (MNRAS, in press). The progenitor meteoroid was sufficiently large and of high enough tensile strength to produce meteorites.