BORON ISOTOPIC COMPOSITIONS IN CM HIBONITES: A NANOSIMS APPROACH
Ming-Chang Liu1,2, Larry R. Nittler1, Conel M. O’D Alexander1 and Typhoon Lee2. 1Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington DC, 20015 (mliu@dtm.cw.edu), and 2Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan.

Introduction: An outstanding question in cosmochemistry concerns the origins of short-lived radionuclides in the early Solar System. Two short-lived isotopes, 10Be ($t_{1/2} = 1.5$ My) and 7Be ($t_{1/2} = 53$ days), can only be produced via energetic particle spallation [1]. Thus, a quantitative understanding of the initial abundances and distributions of these two radionuclides in meteorites could help constrain the irradiation environment in the solar nebula.

It is now well established that 10Be was present in various types of refractory inclusions with different inferred 26Al/27Al ratios. The inferred 10Be/9Be ratios range from $(3–4) \times 10^{-4}$ up to 18×10^{-4}, albeit with significant analytical errors in most cases [2, 3, 4, 5, 6]. Amongst 26Al-bearing CV CAIs, the best constrained initial 10Be/9Be = $(8.8 \pm 0.6) \times 10^{-4}$ (2σ) [7]. For 26Al-free inclusions, the most precise 10Be/9Be ratio of $(5.1 \pm 1.4) \times 10^{-4}$ (2σ) was obtained in a suite of CM PLAty hibonite Crystals (PLACs) [6]. Within errors, 10Be/9Be ratios in other 26Al-free objects corroborate this value [4, 5, 8].

Live 10Be in the early solar system most likely formed as a consequence of protosolar irradiation with variable abundances in meteorites arising from varied irradiation histories [2, 3, 4, 5, 6]. This view was challenged by a proposition that 10Be was derived from trapped Galactic Cosmic Ray (GCR) nuclei by the magnetic fields of the progenitor molecular cloud core [10]. However, a comparison between 26Al-bearing CAIs and 26Al-free PLACs suggested that the difference in 10Be/9Be has no chronological meaning [6]. This contradicts a major prediction of the trapping model, making it less likely to be the primary 10Be contributor.

The above argument that 10Be was of solar irradiation origin is based on a chronological viewpoint. If one aims to quantitatively understand the spatial distribution of 10Be in a certain time period, examinations of different objects that formed closely in time would be needed. CM Spinel-HIBonite spherules (SHIBs) would be a good target for this purpose, as their 26Al/27Al indicates that they formed $\sim 1 \times 10^5$ years after CAIs [6]. However, resolvable 10Be excesses have not yet been found in SHIBs, primarily because of pervasive B contamination from surface cracks and the lack of large surface area for a typical ion probe spot ($\sim 30 – 50 \mu$m, [e.g., 6]). This problem could hopefully be overcome with the high spatial resolution of the NanoSIMS. Here we report the preliminary results of Be-B isotopic measurements in CM hibonites obtained with the CIW NanoSIMS 50L.

Experimental: Hibonite grains were hand-picked from an acid residue of the Murchison meteorite prepared at the University of Chicago (courtesy of Andy Davis). Of 3 dozen hibonite samples found, only 6 grains (2 SHIBs and 4 PLACs) that had large enough areas of hibonite ($\sim 20 – 40 \mu$m across) were selected for measurements.

For the Be-B measurements, a 16 KeV 16O$^-$ primary beam with an intensity of $\sim 5–10$ nA ($\phi \sim 7 – 10 \mu$m) was used to generate a $\sim 15 \times 15 \mu$m2 raster over polished, epoxy-mounted samples. Beam blanking was applied in every analysis, so that only signals from the central $6 \times 6 \mu$m2 area were collected. This helped to eliminate contributions from scattered ions from the surroundings. Before each measurement, the sample was pre-sputtered for 5–10 mins until the B signal became steady. The mass resolution was sufficient to resolve interferences (e.g., hydrides, 27Al$^{3+}$, 28Si$^{4+}$) from peaks of interest. Secondary ions (6Li$^+$, 7Li$^+$, 9Be$^+$, 10B$^+$, 11B$^+$, 27Al$^{10+}$) were counted simultaneously with six electron multipliers. The counting time of each cycle was optimized based on the count rate of 10B (~ 0.003 counts/sec ~ 10 counts/sec) to reach sufficient counting statistics. Each analysis was comprised of 300 cycles, so that the total analytical duration ranged from 1.5 hours to 3 hours. Sample charging was monitored and corrected for every 30 cycles. The backgrounds of the EMs (~ 0.003 counts/sec) were measured overnight when measurements were not being performed. The deadline effect of the counting system was negligible because of the low intensities of secondary ions (\lesssim a few thousand counts/sec). Under such low count rates, the analytical uncertainty was primarily determined by counting statistics.

The instrumental mass fractionation (IMF) and relative sensitivity factor (RSF) of Be to B were characterized on a NBS612 glass (10/B11B = 0.2469; 9/Be11B = 1.79 [11]). Contributions from spallogenic 9Be, 10B, and 11B in hibonite samples by GCRs were also estimated. However, they were insignificant compared to the analytical errors.

Result and Discussion: The B isotopic compositions of the measured grains are shown in Fig 1.
\(\delta^{10}\text{B}\) ranges from \(-13\%\) to 330\%. The best fit through all the points yields a slope corresponding to \(^{10}\text{Be}/^{9}\text{Be} = (5.7\pm 1.6) \times 10^{-4}\), with an intercept \(^{10}\text{B}/^{9}\text{B} = 0.250 \pm 0.004 \) (2\(\sigma\)). Two points with the highest \(\text{Be}/\text{B}\) ratios are from the same PLAC grain. Although this correlation line is primarily defined by the two high points, the reduced \(\chi^2 = 1.3\) indicates that all the hibonite grains could have sampled a common \(^{10}\text{Be}\) reservoir. This result corroborates the previous estimates by [4] and [6]. If we combine the NanoSIMS results with those in [6] obtained with CAMECA IMS1270 (Fig. 2), the slope of the best fit yields a \(^{10}\text{Be}/^{9}\text{Be} = (5.3\pm 1.0) \times 10^{-4}\) and intercept of 0.252 \pm 0.002 (\(\chi^2_{\text{red}} = 1.3\)).

The \(^{10}\text{Be}/^{9}\text{Be}\) value of \((5.3\pm 1.0) \times 10^{-4}\) in \(^{26}\text{Al}\)-free CM PLACs further argues against the GCR-trapping model of [10]. Assuming chronological significance for \(^{10}\text{Be}\), the minimum difference in formation time between \((5.3\pm 1.0) \times 10^{-4}\) (PLACs) and \((8.8\pm 0.6) \times 10^{-4}\) (CAIs, [7]) is \sim 0.6\ My, inconsistent with what is inferred from \(^{26}\text{Al}/^{27}\text{Al}\) ratios (\(> 3\) My, e.g., [12]). A heterogeneous distribution of \(^{10}\text{Be}\) seems a more likely explanation. Another line of evidence for a heterogeneous distribution of \(^{10}\text{Be}\) comes from the initial \(^{10}\text{B}/^{11}\text{B}\). The initial ratios for PLACs (0.252 \pm 0.002) and for Allende CV CAIs (0.253 \pm 0.001, [2, 7]) are essentially identical, indicating that these solids formed in the same B reservoir whose average \(^{10}\text{B}/^{11}\text{B}\) was not affected by the widespread decay of \(^{10}\text{Be}\). Thus, we conclude that all these observations can be best explained by \textit{in-situ} production of \(^{10}\text{Be}\) by protosolar irradiation.

Unfortunately, this study fails to obtain resolvable \(^{10}\text{B}\) excesses in SHIBs because they appear to have much more B than do PLACs. Even though we were able to analyze pure hibonite, low \(^{9}\text{Be}/^{11}\text{B}\) ratios (<1) would have obscured any \(^{10}\text{B}\) excesses, if present. The high B concentrations in SHIBs might have been due to introduction of “common boron” into hibonite during either remelting (SHIBs crystallized from a melt e.g., [13]), or alteration through cracks. Therefore, meaningful comparisons of \(^{10}\text{Be}/^{9}\text{Be}\) between \(^{26}\text{Al}\)-bearing SHIBs and CAIs still remain difficult, if not impossible.

References