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Introduction: It is well established that the
Earth and the Moon (Apollo samples and lunar
meteorites) have almost identical oxygen isotopic
ratios. However, oxygens implanted within a
few hundred nanometers below the surface of
metal particles separated from lunar soils show
large mass-independently fractionated isotopic
ratios with ∆17O (≡ δ17O − 0.52 δ18O, δiO ≡
[(iO/16O)/(iO/16O)SMOW − 1] × 1000) ranging
from ∼ −20 h [1] to ∼ +26h [2]. Since a sub-
stantial amount of Earth escaping O+ flux from
the upper atmosphere (Geotail Mission [3]) is
likely to reach the lunar surface [4], Ozima et al.
[5] suggested that the extraordinary oxygen im-
planted on lunar metals could be attributed to
terrestrial oxygen picked up from the upper at-
mosphere by the Solar Wind, which we call the
Earth Wind. To test this hypothesis, we have
been investigating isotopic fractionation of O+

ions in the upper atmosphere (above 100 km),
from where O+ cations most likely to be picked
up by the solar wind.

There are isotope exchange reactions and pho-
tolysis (photo-ionization and photo-dissociation
due to UV solar radiation), which may yield mass
independent isotopic fractionation (MIF) of oxy-
gen in the Earths upper atmosphere. We re-
ported that photochemical reactions would pro-
duce large MIF provided that reaction rates for
different isotopes differ substantially [6],[7], and
that UV photo-dissociation make MIF when we
assume that O2 molecules are in the vibrational
ground state or obey the Boltzmann distribution,
and rotational level is zero [8]. The cross sec-
tion of the Schumann-Runge band (170-200 nm)
has a serrated shape, which is come from the en-
ergy difference between rotational levels. So, the
Schumann-Runge band ought to make large MIF
of oxygen. Here, we report calculated photo-
dissociation rate with concerning rotational lev-
els and estimation of isotopic ratio of the thermo-
sphere.

Method: First principles reaction dynamics
simulations were performed to compute the pho-
tolysis rate for the B3Σ−u ← X3Σ−g electronic

transition, which corresponds to the Schumann-
Runge band. The Born-Oppenheimer approxi-
mation was employed in this paper; in the first
step the time independent Schrödinger equation
was solved only for the electron-motion, and then
we performed the wave-packet dynamics for the
nuclei-motion in the potential energy curves de-
termined by the first step calculation. Quantum
chemical program package, MOLPRO 2006.1 [9],
was used for calculation of the potential surface
of O2, and the quantum dynamics was carried
out by our own program package. The photo-
dissociation cross section can be calculated by
quantum molecular dynamics. Therefore, follow-
ing the time dependent approach, the autocorre-
lation function was numerically computed by the
second step calculation. Finally, the theoretical
spectrum as a function of wavenumber of the ex-
citation light was estimated by the Fourier trans-
form of the autocorrelation function, A(t). In SI
unit, the dissociation cross section is given by

σ(ν) =
πν

3cε0h̄

∫ ∞

−∞
dt exp [i(Ei + hν)t/h̄]A(t),

where EI is the energy of the initial ground state,
hν is the energy of the excitation light [10].

Results and Discussion: We show calculated
cross section in Figure 1 and 2. In these fig-
ures, we assume that O2 molecules are in the vi-
brational ground state. It is difficult to get ab-
solute value of cross section using our method,
but it is important that the shape of our calcula-
tion is similar to reference [11]. It has the contin-
uum absorption (peak at ∼ 140 nm) and the fine
structured band absorption spectra around 170-
200 nm. In the continuum absorption, the exci-
tation energies shift mass-dependently between
isotopomers. In the band spectra, peak of cross
section also shift mass-dependently, while mag-
nitude relations are different between transitions.
For example, some transitions the largest is for
16O16O, another is for 16O18O. One important
note is that ratio of cross sections between ma-
jor isotope and rare isotopes is changing with
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wavenumber, because we focus in isotopic effect
of photo-dissociation.

Using cross section calculated above, we cal-
culate isotopic ratios of UV-dissociated oxygen.
Production rates of oxygen atoms are get from
[iO]/dt = Ji [CiO], where brackets ’[]’ means den-
sity of species, Ji is photo-dissociation rate. We
calculate photo-dissociation rate as a function of
the altitude

Ji(z) =
∫

σi(ν)I(z, ν) dν,

where subscript i is the insignia of isotopes (i =
16, 17, 18), z is the altitude, I(z, ν) is the intensity
of light at the altitude of z. For considering the
shielding effect which is a popular idea for mass
independent fractionation, the light intensity I
has z-dependency I(z, ν) = I0(ν) exp[−τ(z, ν)],
where I0 is a initial intensity which we use the
6000 K black body radiation here, τ is the opti-
cal depth τ(z, ν) =

∑18
i=16 σi(ν)

∫ z

∞[CiO] dz. We
show blue circles which is the results of this pa-
per in Figure 3. Each point correspond to another
mixing ratio of rotational levels. ∆17O = −2.0 h
to −0.6 h

While red squares which correspond to differ-
ent temperatures of the boltzmann distribution in
Figure 3 show large variation (from negative to
positive) in isotopic ratio, all blue points show
negative ∆17O. At 200 K, the population of the
vibrational ground state is major, so we compare
blue circles (∆17O = −2.0 h) with 200 K red
point (∆17O = −5.5 h). When we consider rota-
tional levels, magnitude of anomaly are smaller,
but they keep negative. Now, we are calculating
cross sections with rotational levels at high tem-
perature in the expectation that signs of isotopic
ratios don’t change.

References: [1] Hashizume & Chaussidon,
Nature 434, 619-622 (2005). [2] Ireland et al.,
Nature 440, 776-778 (2006). [3] Yau & André,
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Figure 1: Photo-dissociation cross section of O2.
A red line is a calculated cross section for 16O16O,
a black line of a subplot is a reference from [11]

Figure 2: Closeup of Figure 1 with isotopomers.
We can see wavelength shifts and differences in
the serrated shape.

Figure 3: Oxygen three isotope plot of oxygen
atom produced per unit time. Blue circles are
results changing Boltzmann distribution of rota-
tional levels in the ground state. Red squares are
our results presented at metsoc2009 for compari-
son.
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