Garvie L. A. J. Bell D. R. Buseck P. R.
Petrography and Geochemistry of a 30-Centimeter Pyroxenite Nodule from the Bondoc Mesosiderite [#1386]
The Bondoc mesosiderite contains one large pyroxenite nodule, which we suggest is an intact fragment of the mafic crust from a differentiated parent body.

Tarduno J. A. Cottrell R. D. Hopkins J. Erickson A.
The Paleomagnetic Record of Pallasite Meteorites [#2150]
We present paleointensity data from olivine containing magnetic inclusions from main group pallasite meteorites that suggest magnetization in strong magnetic fields, and discuss the implications for pallasite parent body evolution.

Lauretta D. S.
Trace Element Distributions in the Fukang Pallasite [#1462]
We present the first results from our new laser-ablation ICP-MS facility. Trace-element abundances have been measured in metal, olivine, sulfide, and phosphide phases in the Fukang pallasite. The results provide insight into the origin and thermal history of this meteorite.

Walker R. J. Yokoyama T. Herzog G. Cook D. L.
Osmium Isotopic Heterogeneities in Iron Meteorites and Pallasites [#1324]
Osmium isotope ratios in iron meteorites from five groups show variable modification by long-term cosmic ray exposure. There is no evidence for nucleosynthetic anomalies in Os in the five groups, or the Eagle Station pallasite.

Fukami Y. Kimura J. Irisawa K. Yokoyama T. Hirata T.
Mass-Dependent Fractionation of Tungsten Isotopes in IIIAB Iron Meteorites and Main-Group Pallasites [#1649]
The W stable isotope compositions in IIIAB irons and metallic phases of PMG were precisely determined. The results suggest the possibility that W stable isotopes in IIIAB irons fractionate during fractional crystallization of metallic core.

Blichert-Toft J. Moynier F. Lee C.-T. Albarede F.
Radiogenic Pb in Muonionalusta Troilite and the Old Age of the IVA Asteroid [#1127]
We present Pb-Pb data on troilite from Muonionalusta (IVA). The data reveal highly radiogenic Pb giving a $^{207}\text{Pb}*/^{206}\text{Pb}*$ age of 4.5651±0.0005 Ga (range of 4.563–4.567 Ga), implying that the IVA parent body formed within 3±2 Ma of planetary accretion.

Varela M. E. Kurat G. Zinner E. Brandstätter F.
The Tucson Ungrouped Iron Meteorite: A Step in Deciphering Its Enigmatic Origin [#1316]
Tucson seems to be the result of co-precipitation of metal and silicates from the solar nebula gas and precipitation of metal before silicates in accordance with theoretical condensation calculations for high-pressure solar nebula gas [Ebel 2006].

Defouilloy C. Duhamel R. Robert F. Clog M.
The Isotopic D/H Ratio of Iron Meteorites [#1340]
The D/H ratio of iron meteorites has been measured with a IMS 3f to document the idea that irons are samples from the core of differentiated bodies. Measurements on four irons show an absolute D/H ratio between 131×10^{-6} and 154×10^{-6}.