Introduction: We present a model for S speciation and isotope fractionation in magmatic degassing that is applicable to terrestrial and martian magmas. The model calculates equilibrium proportions of H\textsubscript{2}S, S\textsubscript{2}-, and SO\textsubscript{2} in magmatic gases, S2- and SO\textsubscript{2} dissolved in melts, and the S isotope compositions of gases and melts at temperatures between 600°C and 1300°C and pressures between 0.01 bar and 10 kbar.

The model is tested by comparison to S isotope compositions measured in rocks and gases from a terrestrial basaltic volcano. We then apply the model to conditions of magmatic degassing on Mars to address: 1. The S gas species that are exsolved from martian magmas; 2. the potential modification of primary S isotope signatures in martian melts by magmatic degassing; and 3. the S isotope composition of the martian surface.

Model Parameters: The model input parameters are magmatic oxygen fugacity (f\textsubscript{O\textsubscript{2}}), temperature (T), pressure (P), and the mole fraction of water in the gas phase (XH\textsubscript{2}O). The model assumes chemical and isotopic equilibrium and that the f\textsubscript{O\textsubscript{2}} of the gas phase is buffered by that of the magma, which is reasonable for iron-rich magmas like those on Mars.

The proportions of S2- and SO\textsubscript{2} dissolved in the melt are calculated from:

\[
X = 1/(1 + \exp(2.82 - 2 \times 10f\textsubscript{O\textsubscript{2}})) \quad \text{eq. 1}
\]

where X is the mole fraction of SO\textsubscript{2}, and f\textsubscript{O\textsubscript{2}} is expressed in log units relative to the QFM buffer [1].

The proportions of SO\textsubscript{2}, H\textsubscript{2}S, and S\textsubscript{2} in the gas are assessed using the reactions:

\[
\begin{align*}
H\textsubscript{2}S + 1.50\textsubscript{2} &= 2 SO\textsubscript{2} + H_2O \\
0.5S \textsubscript{2} + 0.50\textsubscript{2} &= SO_2
\end{align*}
\]

The Gibbs free energy of equations 2 and 3 are calculated at T using thermodynamic data from [2], allowing calculation of equilibrium constants for both reactions (K\textsubscript{1} and K\textsubscript{2}, respectively) at T. A modified Redlich-Kwong equation of state from [3] is used to assess the fugacity coefficient for H\textsubscript{2}O at P. This allows application of:

\[
\frac{fSO_2/fH_2S}{fSO_2/0\textsubscript{2}^\ast} = \frac{1.5K_1 + 1.5\log(fO_2)}{1 + \log(fO_2)}
\]

from [4], which, together with:

\[
\frac{fSO_2/0\textsubscript{2}^\ast}{fSO_2/fO_2} = K_2
\]

allows calculation of the proportions of SO\textsubscript{2}, H\textsubscript{2}S, and S\textsubscript{2} (S species/total S) in the gas phase, assuming that the fugacity coefficients for the S gases do not change much with respect to each other as P and T change.

Equations for S isotope fractionation factors for SO\textsubscript{2} and H\textsubscript{2}S and SO\textsubscript{2}-S\textsubscript{2} are taken from [5]. Equations for S isotope fractionation for SO\textsubscript{2}-H\textsubscript{2}S and SO\textsubscript{2}-S\textsubscript{2} are derived from [6]. The fractionation factors for SO\textsubscript{2}-SO\textsubscript{2}, SO\textsubscript{2}-S\textsubscript{2}, H\textsubscript{2}S-S\textsubscript{2}, S2--SO\textsubscript{2}, and S\textsubscript{2}-S\textsubscript{2} can then be calculated following [7]. The equation determining the isotope fractionation between the bulk gas and bulk melt is modified from [8] to include all species potentially present in the gas phase:

\[
1000 \ln \frac{n_{\text{gas}/\text{melt}}}{} = XA1000 \ln \frac{\alpha_{\text{H}_2S-SO_2} + XB1000 \ln n_{\text{SO}_2-SO_2} + \cdots}{
... \text{eq. 6}
\]

where X and Y are the mole fractions of SO\textsubscript{2} and S\textsubscript{2} in the melt, respectively, and A, B, and C are the mole fractions of H\textsubscript{2}S, SO\textsubscript{2}, and S\textsubscript{2} in the gas, respectively.

The evolution of the S isotope compositions of bulk melt and gas, and the species present in each are modeled for open and closed system degassing conditions following [9]. The isotope composition of a gas phase accumulated from open system degassing is also calculated.

Results:

A Terrestrial Basaltic System. Samples of gas and scoria were collected at Masaya (Central American Arc) to test the model. Masaya’s magma is relatively oxidized at \(\Delta QFM+2\) [10] providing a good example of melt where most of the dissolved S exists as SO\textsubscript{2} (eq.1). The S isotope compositions of the gas and scoria were reported by [11]. The initial S content of the melt was estimated by analyzing plagioclase hosted glass inclusions, which contain up to 240 ppm S. The degassed matrix glass contains ~20 ppm S, indicating that at least 90% of the initial S was lost to the gasphase (no sulfides are present).

The measured results are shown along with modeled degassing fractionation curves in Figure 1. An important result of this experiment is that the gas phase sampled at Masaya has isotopic composition reflecting that of an accumulated gas even though Masaya displays open system behavior. The initial isotope composition of the Masaya magma is modeled as +5.2‰ suggesting that the mantle source is affected by slab-derived fluids with high \(\delta^{34}S\) inherited from subducted seawater sulfate.

Martian Magmas. Martian magmas range in f\textsubscript{O\textsubscript{2}} from \(\Delta QFM 0\) to -3 [14, 15]. Sulfur dissolved in melts of these compositions will exist as S2-(eq.1). Figure 2 shows model results for S gas compositions in equilibrium with martian magmas with f\textsubscript{O\textsubscript{2}} of \(\Delta QFM -3\), -1.5, and 0, and P varied from 10 kbar to 0.01 bars. The results show that gases exsolved from martian magmas could have a wide range of compositions. H\textsubscript{2}S is favored at high P, S\textsubscript{2} is favored at low P and low f\textsubscript{O\textsubscript{2}}, and SO\textsubscript{2} is only favored at low P and high f\textsubscript{O\textsubscript{2}}. The results suggest that only the most oxidized martian magmas could produce substantial quantities of SO\textsubscript{2}.

Isotope fractionation models for open system degassing at f\textsubscript{O\textsubscript{2}} and P conditions that favor S\textsubscript{2}, H\textsubscript{2}S, and SO\textsubscript{2}
are presented in Figure 3. A chondritic mantle value of δ^{34}S 0‰ is used as the initial isotope composition of martian magmas. Degassing fractionation is minimal in the case where S_2 gas is dominant (Figure 3a). Minor evolution of the melt towards lower δ^{34}S occurs when H_2S is dominant (Figure 3b). The melt can become significantly depleted in the heavy isotope when SO_2 is the dominant S species in the gas (Figure 3c). In all cases, the bulk accumulated gas phase has a narrowly restricted S isotope composition of between δ^{34}S 0‰ and +2‰.

Implications: Our results suggest that SO_2 is rarely the dominant magmatic S gas exsolved from martian magmas and is only favored at low pressure at the most oxidized conditions measured in martian meteorites. Furthermore, the model suggests that S isotope fractionation during martian magmatic degassing is minimal except where SO_2 is the dominant gas species. Sulfides in Chassigny, Lafayette, and some Shergottites have -5‰ < δ^{34}S < 0‰ [16] which could be explained by low P degassing fractionation at relatively high fO_2 (i.e. where SO_2 is dominant in the gas). The range of δ^{34}S values measured in Nakhlites [16, 17] cannot be explained by degassing fractionation because the fO_2 values for these meteorites would favor H_2S or S_2 in the gas phase. The observed range in δ^{34}S values could either due to mantle inhomogeneity or assimilation of near-surface S. The model results suggest that gases exsolved from martian magmas had a narrow range in δ^{34}S between 0‰ and +2‰, which should represent the bulk S isotope composition of the martian surface.

References: