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We explore the evolution of small asteroids spun to rapid
rotation rates by the YORP effect. If these asteroids are mod-
eled as rubble piles with a characteristic grain size we find that
van der Waals cohesion can stabilize a small asteroid against
disruption even significantly beyond the surface fission limit
discussed previously for asteroids. We trace out the possible
evolution of such small bodies, noting that they may split re-
peatedly. Each split may cause the body to enter a complex
rotation state, and will make the body more stable and able to be
rotationally accelerated to even faster rotation rates at which it
may fission again. A body experiencing such an uninterrupted
sequence of fission events can be completely disassembled at
minimum within a few YORP timescales of the initial body.
We discuss this model in the context of asteroid 2008 TC3.

Simple Asteroid Model We analyze a simple model for a
rubble pile asteroid, a cube with sides of length D containing
Ns ≥ 2 grains across each edge for a total of N3

s grains in
the body, each of radius r = D/(2Ns). The total mass of
the object is ρD3 where ρ is its density. We assume that each
grain contacts 6 other grains (except at the edges). For analytic
tractability we make the grains the same size and arranged in
a cubic lattice which makes for a porosity of∼50%, similar to
what is seen in actual asteroids. We assume the configuration
spins and has self-gravity between all of its different compo-
nents. We also assume that granules in contact exert van der
Waals cohesion between each other.

Internal Forces We first consider the forces internal to the
body in a single direction perpendicular to the spin axis. Take a
coordinate frame fixed in the body with the x axis perpendicu-
lar to one of the faces of the cube. Split the body perpendicular
to the x-axis by a non-dimensional distance 0 ≤ R ≤ 1 so
that the mass of one component is M1 = ρD3R and of the
other M2 = ρD3(1 −R). The distance between the centers
of mass of these two components will always be a fixed value
D/2 independent ofR.

The relative force between the two components will be the
sum of the gravitational force (approximated as two masses
centered at their centers of mass), d’Alembert inertial force,
and cohesive forces at the interface between the two bodies.
For our simple system these are
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where G is the gravitational constant equal to 6.673 × 10−11

m3/(kg s2), Ω is the rotation rate of the body, and A is the
Hamaker constant of the material divided by the contact spac-
ing and equals ∼ 0.05 N/m for material analogous to lunar

regolith [1,2], and r is the particle grain radius in meters. Thus
the total force across an interior plane in the positive direction
is
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where Ω2
c = 8Gρ. We see that if the cohesion is zero (A = 0),

the body can separate for allR when Ω ≥ Ωc. However, once
there is some cohesion the body no longer splits uniformly. In-
stead, we find that the total internal force will be positive when
(Ω/Ωc)

2 ≥ 1 + A
64rGρ2D2R(1−R)

and see that the minimum
spin rate for separation of the body occurs at R = 1/2 when
R(1−R) is maximized at the center of the body.

Internal Stress and Failure Criterion For our simple model,
we can immediately identify the stress across different internal
planes. We compute the stress across three planes, two that
bisect the body perpendicular to the y and z axes, and one that
cuts the body into two portions perpendicular to thex axis. The
stresses in the axis directions are then all principle stresses and
are computed by dividing the internal forces across the plane
by the area, equal to D2

σxx = 4Gρ2D2R(1−R)

[(
Ω

Ωc

)2

− 1

]
− A

8r
(5)

σyy = Gρ2D2

[(
Ω

Ωc

)2

− 1

]
− A

8r
(6)

σzz = −Gρ2D2 − A

8r
(7)

agreeing in general with [3], which were derived for an ellip-
soidal body and did not have cohesion specifically incorporated
into the stress. For the situations of interest to us, Ω > Ωc,
and thus we note that the stress σxx is maximized at the body
center, R = 1/2. Due to this in the following we only con-
sider the stress on planes that cut through the center of mass
of the body, as this will be the first location to fail in general.

Following Holsapple [3] we apply the Drucker-Prager fail-
ure criterion:

1√
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√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 ≤ k − 3sp

where σ1 ≥ σ2 ≥ σ3 are the principal stresses, k is the
cohesive shear stress for failure at zero pressure, 3p = σ1 +
σ2 + σ3 and s = 2 sinφ/

[√
3(3− sinφ)

]
, where φ is the

friction angle and is taken to be 45◦ by Holsapple. For the
failure shear stress we assume a simple model where k =
µ|Fc|/D2, where µ ∼ 1 is a Coulomb friction coefficient.
Evaluating the failure criterion we find
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Evaluating this inequality for an assumed bulk density of
ρ = 2 × 103 kg/m3, a cohesion constant of A = 0.05 N/m,
and a friction angle of φ = 45◦ gives us a relationship between
maximum grain size, body spin rate, and body size

r ≤ 21.928(1.068 + µ)[
(1063Ω)2 − 1

]
D2
∼ 4× 10−5

(ΩD)2
(9)

Applying this to asteroid 2008 TC3 with a spin period of 100
seconds (Ω = 0.0628) and size of D ∼ 4 m [4], provides
an upper limit of r ≤ 0.3 × 10−3 (1 + µ). Thus for µ ∼
1 we see that millimeter-sized grains should have sufficient
cohesive force to keep the body stable. This is consistent
with the observed morphology of 2008 TC3 and motivates
more detailed numerical analysis of this system using precise
computations. We also note that away from the mid-plane of
the asteroid, the total stresses will decrease and hence cohesion
between larger-sized grains may be sufficient for stability.

Size and spin evolution Now assume we have a rubble pile
asteroid characterized by a grain size r∗, meaning that it will
fail when ΩD >

√
4× 10−5/r∗ and ideally fission into two

pieces, failing along an internal plane of weakness either de-
fined by fewer contacts between grains, an embedded larger
component, or some other morphology that leads to weakness.
Due to the rapid spin rate of the body, the two components
will immediately escape each other. Furthermore, the two
components will likely immediately enter a complex rotation
state, as the moments of inertia of each separate body will not
be naturally aligned with the principle axes, whereas the spin
vector of the components will be conserved on either side of
the splitting. Thus, we would expect the products of such a
fission to be rapidly spinning bodies in complex rotation states,
which again is consistent with known members of the asteroid
population and with 2008 TC3 in particular. It is instructive
to note that our ideal “cube” body will immediately enter into
a pure long-axis rotation mode upon fission, again consistent
with the long-axis mode rotation state of TC3 [4].

Assuming a uniform grain size r∗ that controls the strength
of internal cohesion, the new spin rate for failure of the fission
products will be increased by a factor D/D′, where D′ is the
new effective size of the body. If we assume that the body
splits in half and arbitrarily model each portion as a cube again
with a new effective size,D′, thenD′ ∼ D/21/3 = 0.8D and
the body can spin up to Ω′ = 21/3Ω, or approximately 25%
faster, before it undergoes failure again.

Now assume that YORP spins the body up again. We take
the YORP acceleration model from [5] which can be written
as
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where P is the average solar radiation pressure acting on the
body, D is the size of the body, M its mass, and C0 is a di-
mensionless YORP characteristic value. Thus, if we assume a
constant dimensionless YORP coefficient the rate of rotational
acceleration increases as the body size decreases. Given an

initial rotation rate Ω0, we can compute the time it will take
the body to be accelerated by a fraction f to (1 + f)Ω0 as

Tf =
ρ

PC0
fΩ0D

2 (11)

where we note that for small bodies (perhaps less than a few
centimeters in size) the dependence transitions to being pro-
portional to D [6].

If we assume that a fissioned body continues to rotationally
accelerate to its next fission event, and that the size of the bod-
ies decrease as estimated above, we can develop a minimum
lifetime for a small body before it is completely dissipated by
fission. Assume we start with a body of size D0 and calcu-
late the first time step as its YORP timescale, i.e. the time it
takes to go from no rotation to a fission rate defined by Ω0, or
To = ρ

PCΩ0D
2
0 . Then, after its first fission its new size will be

D1 = D0/2
1/3 and its new fission rate will be Ω1 = 21/3Ω0.

Then the time to accelerate from Ω0 to Ω1 given the new size
D1 is T1 = To(1 − 1/21/3)/21/3. By extrapolation we find
that T2 = T1/2

1/3, etc., to find Tn = T0/2
n/3, where we

now define T0 = To(1 − 1/21/3) ∼ 0.2To, or about 20% of
the YORP timescale of the body. Starting at time T0, then, we
find that the minimum lifetime of the body can be estimated
as TL = T0 + T1 + · · ·Tn + · · ·. Computing the summa-

tion
∑∞

i=0
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= 1

1−1/21/3 , we then find that TL = To,

or that once the body starts to undergo its fission process the
total lifetime of the body is approximately equal to its initial
YORP timescale. If the body initially starts at a zero spin rate
then it will take a minimum of ∼ 2 YORP timescales for it to
be completely dissipated by fission. We note that the YORP
dependence on body size transitions to 1/D for small sizes
[6]. This would increase the total lifetime, as then the time to
spin up to fission becomes constant for subsequent products,
proportional to ΩnDn, and the sum of the individual lifetimes
no longer converge. Still, after some finite number of fissions
the resulting products will be equal to the smallest grains in
the asteroid.

Again, let us consider 2008 TC3. Assuming that it has an
initial non-dimensional YORP coefficient of 0.005, which is
typical of the bodies evaluated in [5], that it lies in a circular
orbit at 1 AU, has an initial rotation period of 100 seconds, and
an initial mean size of ∼ 4 m [4] we find the YORP timescale
to be about 3000 years, which would be a lower-bound on the
minimum lifetime of the object. Should an evolving rubble
pile undergo a period of YORP deceleration and transition
through a near-zero spin state the total lifetime of the object
could be increased substantially.
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