1213.pdf

THE 100TH MARTIAN METEORITE KSAR GHILANE 002 (KG 002): NOBLE GASES AND RADIONUCLIDES POINT TO A STRONG RELATIONSHIP WITH LOS ANGELES. J. A. Cartwright¹, S. Merchel², G. Rugel², L. Fimiani³, P. Ludwig², J. Llorca⁴ and U. Ott¹. ¹Max Planck Institut für Chemie, Johann-Joachim-Becher-Weg 27, 55128 Mainz, Germany. E-mail: julia.cartwright@mpic.de. ²Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany. ³Technische Universität München, 85748 Garching (München), Germany. ⁴Universitat Politècnica de Catalunya, Diagonal 647 ed. ETSEIB, 08028 Barcelona, Spain.

Introduction: Ksar Ghilane 002 (KG 002) is the 100th Martian meteorite to be catalogued by the Meteoritical Bulletin, and the first to be recovered from Tunisia (January, 2010). The single stone, weighing 538 g, is a coarse-grained basaltic shergottite that shows remarkable petrological and compositional similarities with evolved shergottite Los Angeles [1,2].

By performing noble gas and radionuclide analysis on KG 002, we aim to contribute further in determining the extent of its similarity with Los Angeles. In particular, we investigate the potential for a launchpairing of these two meteorites by comparison of cosmic ray exposure (CRE) ages, where preferred CRE ages for Los Angeles of 3.10 ± 0.70 and 3.35 ± 0.30 Ma have been previously suggested [3,4].

Methodology: A 67.53 mg bulk fragment of KG 002 was analysed for all noble gases (He, Ne, Ar, Kr and Xe) using an MAP 215-50 noble gas mass spectrometer at MPIC, Mainz. Gases were extracted in steps at 600, 1000 and 1800 °C. A 177.44 mg bulk fragment of KG 002 was used for long-lived radionuclide analysis, using the separation procedure described by [5]. The light radionuclides ¹⁰Be and ²⁶Al were analysed at the accelerator mass spectrometry (AMS) system DREAMS at Dresden, while ⁵³Mn was analysed at the GAMS facility at TU Munich.

Results: Our results for the noble gases He, Ne and Ar, and our radionuclide data are summarised in Tables 1 and 2, respectively. Also listed for comparison are literature data for Los Angeles [4,6-8]. Whilst, for calculation of CRE ages, we assumed all ³He to be cosmogenic, cosmogenic ²¹Ne_c and trapped ²⁰Ne_t were obtained assuming trapped neon to have Earth atmospheric (EA) composition [9] and a cosmogenic (20 Ne/²²Ne)_c ratio of 0.83 e.g. [10]. For the calculation of 38 Ar_c and 36 Ar_t, we assumed trapped Ar to have EA composition [11] and a cosmogenic (38 Ar/³⁶Ar)_c ratio of ~1.5 [12].

Concentrations: We observe slight differences in concentrations of (mostly) radiogenic ⁴He and ⁴⁰Ar, as well as trapped ²⁰Ne_t and ³⁶Ar_t, for Los Angeles and KG 002 (Table 1). However, the most startling feature is the near-identical concentrations of cosmogenic ³He, -²¹Ne_c, ³⁸Ar_c and ¹⁰Be (Tables 1-2). Such similarities may be expected in (chemically similar) samples that have experienced similar cosmogenic exposure conditions. This may provide a hint for a launch-pair.

CRE ages: We have calculated CRE ages for KG 002 using two different methods: 1) The empirical model of 22 Ne/ 21 Ne-corrected production rates [14,15] using our noble gas data; 2) The Monte-Carlo model of depth- and radius-dependent production rates [16] using both radionuclide and noble gas data. Both methods use major and trace element data for KG 002 from [1] (for major elements, average of two analyses).

Using method 1) with the cosmogenic concentrations given in Table 1, we obtain T_3 (³He), T_{21} (²¹Ne), and T_{38} (³⁸Ar) ages of 1.97 ± 0.06 , 4.42 ± 0.11 and 2.90 ± 0.29 Ma respectively. The calculated errors take into account uncertainties in concentrations of cosmogenic nuclides as well as in the shielding parameter, but not in chemical composition. Our T₃₈ age is similar to the preferred Los Angeles CRE age of 3.1-3.4 Ma reported by [3,4]. In addition, [4] and [6] report T_3 , T_{21} and T₃₈ ages for Los Angeles of ~1.35-1.9, 3.13-3.6 and 3.23-2.8 Ma, respectively. The T₃ ages are low compared to the T_{21} and T_{38} ages: a feature we also observe for KG 002. Note that in order to derive the T_{21} value [6] corrected their ²¹Ne_c for production from Na and then calculated an age of 3.6 Ma using the $(^{22}\text{Ne}/^{21}\text{Ne})_{c}$ ratio of ~1.163 from their highest temperature release (1600 °C), as it should be the least ef-

Table 1: Total noble gas (NG) concentrations and ratios for KG 002 and Los Angeles. t = trapped, c = cosmogenic.

NG	KG 002	Los Angeles		
		[4]	[4]	[6]
³ He	3.16(10)	1.69(10)	2.64(15)	3.14
⁴He	21.49(86)	21.80(70)	29.50(1.00)	69.70
²⁰ Ne _t	10.50(2.21)	78(7)	62(5)	97.9
²¹ Ne _c	60.46(1.17)	62(5)	59(2)	59.2
²² Ne	78.30(1.39)	94.30(6.10)	82.24(4.61)	86.2
²⁰ Ne/ ²² Ne	0.953(8)	1.58(8)	1.52(7)	1.87
²¹ Ne/ ²² Ne	0.773(5)	0.690(38)	0.704(30)	0.69
(²² Ne/ ²¹ Ne) _c	1.277(9)	1.35(7)	1.33(6)	1.288(5)
³⁶ Ar _t	12.57(1.56)	63(5)	59(2)	31.7 [#]
³⁸ Ar _c	49.10(4.89)	49.8(3.0)	50.1(2.5)	45.1 [#]
⁴⁰ Ar	222.7(19.8)	386(10)	340(8)	298.0

 ^{3-4}He , ^{40}Ar in 10⁻⁸ ccSTP/g, $^{20-22}Ne$ and $^{36-38}Ar$ in 10⁻¹⁰ ccSTP/g.

Table 2: Cosmogenic radionuclide (RN) data for KG 002 and Los Angeles.

DN	KG 002	Los Angeles				
KIN		[7]	[7]	[7]	[8]	
¹⁰ Be	18.27(35)	18.4(4)	19.5(4)	18.4(3)	17.6(5) [#]	
²⁶ AI	116.1(1.9)	95.5(2.4)	103.0(3.8)	89.6(3.0)	77.7(3.7)	
⁵³ Mn	300(64)	-	-	-	251(14)	

¹⁰Be & ²⁶Al in dpm/kg, ⁵³Mn in dpm/kg Fe. # = renormalised by factor of 1.045 for direct comparison between PRIMElab and DREAMS [13].

fected by production on Na. Later, [4] followed the same approach, arriving at a T_{21} age of 3.15 Ma.

If we perform a similar correction based on an estimated 4.4% Na contribution to 21 Ne_c (calculated for a typical 21 Ne_c production rate for Na [16] and Na content of ~1.6 % [1]), and use our 1800 °C step for the (22 Ne/ 21 Ne)_c shielding parameter (1.161 ± 0.012), we obtain a T₂₁ age of 3.44 ± 0.11 Ma. This value is close to the (presumably more reliable) T₃₈ age of 2.90 ± 0.29 Ma. Together, this may suggest an ejection event at ~3.0 Ma.

Using method 2), Figure 1 shows a comparison of ¹⁰Be and ²⁶Al activities expected for CRE ages in the range 2.8-3.7 Ma and for saturation compared with the measured values. While a pre-atmospheric radius of ≤ 25 cm can be excluded based on the $(^{22}\text{Ne}/^{21}\text{Ne})_c$ ratio of 1.277 ± 0.009 (Fig. 2), the radionuclide data allow us to exclude very large radii (Fig. 1). The best match is for the investigated sample originating from a position near the centre of a 35-65 cm radius meteoroid. The data do not overlap with the calculated saturation activities of ¹⁰Be and ²⁶Al, suggesting a shorter CRE than necessary for ¹⁰Be saturation. This is in agreement with the T_{38} age of ~2.9 Ma, for which the ²⁶Al activity is near saturation (94.2 %), whereas ¹⁰Be is undersaturated. Overall, the data allow for a simple one-stage travel history through space before entering the Earth's atmosphere. The investigated sample was probably from a shielded position near the centre, excluding SCR-induced nuclear reaction products as inferred for other Martian shergottites.

The CRE ages of KG 002 from methods 1 and 2 agree well with the ages calculated for Los Angeles: 3.0 ± 0.4 and 3.3 Ma from ¹⁰Be and 2.8-3.1 Ma from several noble gases [3,7-8]. However, we can exclude a common travel of both KG 002 and Los Angeles in a single meteoroid, as previous data for Los Angeles deduced a meteoroid radius of 20-40 cm [7]. Thus, a conjoint ejection event on Mars is a possibility, but individual exposure of both meteoroids is required.

Acknowledgements: G. Korschinek and T. Faestermann are thanked for ⁵³Mn support, whilst S. Akhmadaliev is thanked for ¹⁰Be and ²⁶Al support.

References: [1] Llorca J. et al. (subm.) *MAPS*. [2] Roszjar J. et al. (2012) *LPSC XLIII, this conf.* [3] Terribilini, D. et al. (2000) *MAPS*, 35:A155-A156. [4] Eugster, O. et al. (2002) *MAPS*, 37:1345-1360. [5] Merchel S. and Herpers U. (1999) *Radiochim. Acta*, 84:215-219. [6] Garrison, D.H. and Bogard, D.D. (2000) *MAPS*, 35:A58. [7] Nishiizumi K. et al. (2000) *MAPS*, 35:A120. [8] Berezhnoy A. A. et al. (2010) *MAPS*, 45:A13. [9] Eberhardt P. et al. (1965) *Zeitschr. Naturforsch.* A 20:623-624. [10] Garrison D.H. et al. (1995) *Meteoritics* 30:738-747. [11] Lee J.-Y. et al.

Figure 1: Experimental ¹⁰Be and ²⁶Al activities of KG 002 in comparison to predictions for saturation and three different CRE ages (2.8, 2.9 and 3.7 Ma). Predicitions are based on Monte-Carlocalculated depth- and radius-dependent production rates [16] and chemical composition from [1].

Figure 2: Plot of Cosmogenic ²¹Ne production rate P-21 vs. cosmogenic (²²Ne/²¹Ne)_c based on the Monte-carlo model by [16] and element abundances from [1]. Coloured full lines = potential preatmospheric radii. Dashed black lines = depth within a sample of such radius. The pink band is the total measured (²²Ne/²¹Ne)_c for KG 002 (Table 1). A pre-atmospheric radius of \leq 25cm can be excluded.

(2006) GCA 70:4507-4512. [12] Wieler R. (2002) Reviews in Min. and Geochem. 47:125-170. [13] Merchel S. et al. (subm.) Nucl. Instr. Meth. Phys. Res. B. [14] Eugster O. et al. (1997) GCA 61:2749-2757. [15] Eugster O. and Michel T. (1995) GCA 59:177-199. [16] Leya I. and Masarik J. (2009) MAPS 44:1061-1086.