REDETERMINATION OF THE Sm-Nd AGE AND INITIAL ε_{Nd} OF LUNAR TROCTOLITE 76535: IMPLICATIONS FOR LUNAR CRUSTAL DEVELOPMENT. L. E. Nyquist1, C.-Y. Shih2, and Y. D. Reese3, 1KR/NASA Johnson Space Center, Houston, TX 77058 (E-mail: laurence.e.nyquist@nasa.gov), 2ESCG Jacobs-Sverdrup, Houston, TX 77058, 3ESCG/MEI Technologies Inc., Houston, TX 77058.

Introduction: Lunar troctolite 76535 is an old lunar rock predating the era of the lunar cataclysmic bombardment, but its radiometrically determined ages have been discordant [1-3]. The most recent multi-chronometer study [4] gave preferred ages of 4226±35 Ma and 4236±15 Ma from a 207Pb/206Pb isochron and an U-Pb upper concordia intercept, resp. We derive an age of 4323±64 Ma from Sm-Nd data reported by [4] for the bulk rock and three mineral separates. They derived an age of ~4.38 Ga from combined Rb-Sr data [3,4] by omitting data for olivine separates. 39Ar/40Ar ages of ~4.2 Ga are summarized by [5].

New 147Sm/143Nd data presented here give an age of 4335±71 Ma in agreement with the Sm-Nd age from [4], whereas 146Sm/142Nd data give a model age $T_{\text{LEW}} = 4439±22$ Ma. Further, initial ε_{Nd} for 76535 conforms to the 143Nd evolution expected in an urKREEP [6] reservoir, consistent with inheritance of urKREEP Sm-Nd systematics via assimilation. We show that urKREEP Sm-Nd systematics require the lunar initial ε_{143}Nd to exceed the Chondritic Uniform Reservoir (CHUR) value [7], but are consistent with evolution from initial ε_{143}Nd like that of the HED meteorite parent body as defined by a 4557±20 Ma internal isochron for the cumulate eucrites Y-980433 and Y-980318 [8].

147Sm/143Nd isochron: Nine 147Sm/143Nd analyses determine an isochron corresponding to an age of 4335±71 Ma and ε_{143}Nd = 0.23±0.44 (Fig.1). Two data points lie sufficiently far from the fitted isochron to warrant their exclusion from the regression. With these exceptions, the data lie within ~1 ε-unit of the isochron. The MSWD = 22 and may represent response of the Sm-Nd system to post-crystallization events.

146Sm/142Nd isochron: New 146Sm/142Nd data are shown in Fig. 2. Ten data points determine an isochron slope corresponding to initial 146Sm/144Sm (I(Sm)) = 0.0034±0.0005 with MSWD = 1.9. A model age $T_{\text{LEW}} = 4439±22$ Ma is calculated by reference to I(Sm) = 0.0076 [9] for the 4558 Ma angrite LEW 86010 [10] and a 146Sm halflife of 103 Ma [11].

Crystallization Age: We suggest that the Sm-Nd chronometers most accurately give the crystallization age of 76535. We note that a “three-point” 207Pb/206Pb isochron age of 4343±72 Ma is derivable from the data of [4] by regressing their whole rock residue (WR) data with the data for both plagioclase separates PL-1 and PL-2 (cf. [4], Fig. 5), as corrected for the measured Pb blanks. Alternatively, ages of 4338±30 Ma for PL-1 plus PL-2 alone and 4226±35 Ma for WR, PL-1, and OL-P were reported by [4]. Considering the Pb data for WR plus both plagioclase samples may be more appropriate. Pb should be more compatible in plagioclase than in olivine or pyroxene, but the blank-corrected Pb concentration in OL-P (40.1 ppb) exceeded that in PL-2, the reverse of expectation. Moreover, the percentage of Pb blank correction for OL-P (3.7%) exceeded that for PL-2 (2.3%). Further, the blank correction for PL-2 was comparative to that for WR, and only ~2.3 times that for PL-1. Finally, lower blank-corrected Pb concentration for PL-2 (26.8 ppb) than for PL-1 (44.2 ppb) provides no rationale for further blank correction [4].

Significance of (T, ε_{Nd}) relationships: Fig. 3 compares (age(T), ε_{143}Nd) parameters for 76535 to other samples that are enriched in the urKREEP component. Data are from JSC (78236 [12], 72275 [13], 76535 [14]), and UCSD (15386 [15]). 143Nd evolution in the urKREEP reservoir(s) is shown for $\mu =

![Figure 1. 147Sm-143Nd isochron for 76535.](image)

![Figure 2. 146Sm-142Nd isochron for 76535.](image)
\[^{147}\text{Sm}/^{144}\text{Nd} = 0.172\] (red line). The Apollo samples are either KREEP basalts or Mg-suite rocks. KREEPy mare basalt NWA 2977, probably derived from the Procellarum KREEP Terrane (PKT), extends the (\(T, \varepsilon^{143}\text{Nd}\)) correlation to \(~3.1\) Ga ago. That these diverse lunar rock types exhibit the same pre-magmatic, sub-chondritic, radiogenic ingrowth of \(^{143}\text{Nd}\) in their source reservoirs is consistent with their assimilation of large proportions of their Nd from “semi-infinite” sources of urKREEP residua. The \(^{147}\text{Sm}/^{144}\text{Nd}\) ratio in materials from the last \(~5\)% crystallization of parent magma systems of bulk lunar composition is expected to show little variation (e.g., [16]). In the case of a global Lunar Magma Ocean (LMO), the \((T, \varepsilon^{143}\text{Nd})\) correlation can be extrapolated to the time when the LMO had reached \(~90-95\)% crystallization. For rapid LMO crystallization near the solar system age of \(4568\) Ma, an initial lunar \(\varepsilon^{143}\text{Nd} = 1.1\pm0.2\) is predicted, within the error limits of initial \(\varepsilon^{143}\text{Nd}\) for the paired cumulate eucrites Y-980433/318 (Y98) [8]. Hf-W systematics constraining crystallization of the LMO to \(62(+90, -10)\) Ma after formation of the solar system [23] constrain \(\varepsilon^{143}\text{Nd}\) to the range \(+0.6\) to \(+0.9\).

Two-stage model for Nd-isotopic evolution: Fig. 4 models evolution of \(\varepsilon^{143}\text{Nd}\) and \(\varepsilon^{142}\text{Nd}\) in urKREEP source(s) from initial values. For initial \(\varepsilon^{143}\text{Nd}\) like that in the Y98 cumulate eucrites, the modeled evolution prior to crystallization of 76535 gives \(\mu = 0.159\), nearly identical to measured \(\mu = 0.161\) post-crystallization. Similar \(\mu\)-values of \(-0.15-0.17\) can account for evolution to \(\varepsilon^{142}\text{Nd}\) for 76535 for a non-chondritic, Earth-like initial \(\varepsilon^{142}\text{Nd}\). These results illustrate the possibility of (a) early lunar formation, accompanied by early formation of LREE enriched urKREEP, and (b) measured \(\varepsilon^{142,143}\text{Nd} > \text{CHUR}\) for lunar highland rocks.

Implications: Although these Nd-isotopic results for troctolite 76535 are permissive of a “young”, \(~4.4\) Ga moon with initial Nd isotopic composition near chondritic values, the lunar age must be greater than that of the oldest zircon, \(4417\pm6\) Ma [17]. Also, the young \(4360\pm3\) Ma age of 60025 [18] when viewed in combination with concordant Sm-Nd and Rb-Sr ages of \(4.47\pm0.07\) Ga for lunar anorthosite 67075 [19,20] and Sm-Nd data for bulk anorthosites suggests variability in the ages of lunar anorthosites. Key observations are: (a) urKREEP reservoirs were produced contemporaneously, or nearly so, in diverse lunar locations, (b) urKREEP-enriched Mg-suite rocks are contemporaneous, or nearly so, with lunar anorthosites. These observations can be explained by an initial LMO followed by post-magma-ocean genesis of lunar anorthosites [21] as well as of Mg-suite lunar highland rocks (e.g., [22]).