SOLUBILITY AND DIFFUSIVITY OF H-BEARING SPECIES IN LUNAR BASALTIC MELTS. M. Newcombe*1, A. Brett2, J. R. Beckett1, M. B. Baker3, S. Newman1, and E. M. Stolper1 1California Institute of Technology, Pasadena, CA 91125 USA 2University of Cambridge, Cambridge, CB2 3EQ, UK *megan@gps.caltech.edu

Introduction: We have measured the solubility and diffusivity of water in silicate melts similar in composition to lunar magmas under conditions similar to those thought to exist on the Moon. Such measurements provide constraints on the conditions of generation and degassing of water-bearing lunar magmas [e.g. 1,2]. Despite extensive work on intermediate and silicic melts, measurements of water solubility, speciation, and diffusivity at low pressures are limited for basaltic melts [3,4], and essentially nothing is known for melts similar in composition to lunar basalts.

Speciation of “water” in lunar basalt: A silicate melt in equilibrium with a water-bearing vapor will dissolve water as molecular water (H2O) and hydroxyl groups (OH), according to the following reactions [5]:

\[\text{H}_2\text{O}_{(vapor)} \leftrightarrow \text{H}_2\text{O}_{(melt)} \] (1)
\[\text{H}_2\text{O}_{(melt)} + \text{O}_{(melt)} \rightarrow 2\text{OH}_{(melt)} \] (2)

Reactions (1) and (2) can be combined to one governed by the following equilibrium constant (square brackets indicate concentration):

\[K_{eq}^{\text{OH}} \propto \frac{[\text{OH}]^2}{\text{pH}_2\text{O}_{(vapor)} \cdot [\text{O}_{(melt)}]} \] (3)

If the concentration of reactive oxygens in the melt, \([\text{O}_{(melt)}]\), is constant, then at low pressures the concentration of hydroxyl groups in vapor-saturated melt is expected to be proportional to the square root of the partial pressure of water in the coexisting vapor:

\[[\text{OH}]_{(melt)} \propto \sqrt{\text{pH}_2\text{O}_{(vapor)}} \] (4)

H2O_{(melt)} only becomes significant above ~0.5 wt. % total dissolved water [5], so at the low total dissolved water contents thought to be relevant to lunar basalts (<0.1–0.2 wt% [1, 2]), OH is the dominant dissolved species and thus eqn. (4) is expected to describe fully the solubility of water in lunar basaltic melts.

Here, we demonstrate the validity of eqn. (4) for a haplobasaltic melt and for a synthetic lunar basaltic melt over a range of pO2 (from 10^{-13} to 10^{-7} atm) and pH2/pH2O (from 0.01 to 24), and we determine the constant of proportionality for this equation for both melt compositions. We also report a value for D_{water} (the apparent diffusion coefficient for total water [6]) at 1350°C and a pO2 of IW+1.

Methods: Solubility experiments: We equilibrated a synthetic Apollo 15 yellow glass composition (AY) [7] and the 1-atm eutectic composition for the anorthite-diopside join (An36Di64) (AD) with flowing H2-CO2 gas mixtures at 1350°C and 1-atm total pressure (P_{tot}). Concentrations of OH in quenched experimental glasses were measured by FTIR.

The initial H2/CO2 ratio of the gas mixture (R), fixes its equilibrium pH2O, pO2, pCO2, and pH2 in the furnace (Fig. 1); each of the two melt compositions was equilibrated with gas over a range of H2/CO2 ratios, and therefore over a range of pH2O, pH2, and pO2. With decreasing R, pH2 decreases monotonically, pCO2 increases monotonically, and pH2O shows a maximum at IW+0.3 (Fig. 1). Therefore, for any value of pH2O (except at the maximum), there are 2 possible values of pH2. We can exploit this feature of the system to determine the dependence (if any) of water solubility (and diffusivity; see below) on pH2 and pO2.

Diffusion experiments: OH concentration gradients were generated in a three-stage process: (1) AD melt in a 3.6 mm ID Pt crucible was fused at 1350°C and IW+1 for 70 hrs using a CO-CO2 gas mixture. Charges equilibrated in this way contain <50 ppm water (as measured by FTIR). (2) With the sample still hanging in the furnace, the gas mixture was switched to a H2-CO2 mixture at IW+1, which fixed pH2O and pH2 (see Fig. 1). (3) After exposure to the H2-CO2 gas for 10 min (which generated a ~10^3 µm diffusion profile), the sample was quenched in deionized H2O. The diffusively generated concentration gradient in the quenched glass was measured by FTIR.

Results: Solubility experiments: We conducted 10 experiments on AD (IW–2.3 to IW+3.4) and 7 experiments on AY (IW–3.0 to IW+3.0). OH was the only dissolved species detected in the quenched glasses,
although we looked for molecular H$_2$O (by FTIR) and H$_2$ (by FTIR and Raman). As predicted by eqn. (4), the concentrations of OH dissolved in both the AY and AD melts were proportional to pH$_2$O$^\circ$. Best fits to our data are

$$[\text{OH}_{AD}] (\text{ppm}) = (685 \pm 13) \sqrt[p]{p\text{H}_2\text{O}_{\text{aq}} (\text{atm})} \quad (5)$$

$$[\text{OH}_{AY}] (\text{ppm}) = (691 \pm 15) \sqrt[p]{p\text{H}_2\text{O}_{\text{aq}} (\text{atm})} \quad (6)$$

The fact that the proportionality constants are the same within error for AD and AY confirms that the solubility of water is not strongly dependent on melt composition. Moreover, the amount of dissolved OH depends only on pH$_2$O and is independent of pH$_2$ and pO$_2$ across the significant experimental range.

Diffusion experiment: Assuming D_{vw} to be constant, we used equation (3.13) from [8] to fit the concentration profile from the single diffusion experiment reported here. This yielded a best-fit value for D_{vw} for the AD melt at 1350°C and IW+1 of 2.2(±0.4)×10$^{-10}$ m2/s.

Discussion: **Solubility:** Eqn. (6) can be used to determine pH$_2$O of vapor in equilibrium with lunar glasses and melt inclusions [1,2] at 1350°C. For example, a melt containing ~1400 ppm water (as observed in melt inclusions by [2]) would imply pH$_2$O ~4 atm. Assuming pO$_2$=1 atm for lunar magmas [9], we can use the gas-phase reaction H$_2$ + 0.5O$_2$ = H$_2$O and data of [10] to estimate pH$_2$ ~11 atm for this vapor. We can thus place a lower limit of ~15 atm on the entrapment pressure of lunar melt inclusions; the actual entrapment pressure will be higher if the entrapped melt was not vapor-saturated or (as is likely) other gaseous species (e.g., C- and S-bearing species) have significant partial pressures.

Diffusivity: D_{vw} is known to be a strong function of the total dissolved water content of silicate melts at water contents above 0.1 wt% (e.g., [4,6]). Extrapolations of proposed functional forms for this concentration dependence for basaltic melts are compared with our result for AD melt in Fig. 2. Note that at water concentrations from 0.5–3 wt%, these functional forms for D_{vw} are similar [4], but they diverge at low concentrations (Fig. 2). Under oxidized conditions (i.e., water dissolved only as water molecules and hydroxyl), [6] proposed that the concentration dependence of water diffusivity reflects low concentrations of mobile dissolved water molecules that react via eqn. (2) to produce immobile OH groups. Under the reducing conditions relevant to lunar petrogenesis, highly mobile, low-concentration, dissolved H$_2$ molecules could react via an oxidation-reduction reaction to generate immobile OH groups [12]. Or mobility and reactions among all three components could contribute to the observed concentration profiles in OH.

![Fig. 2. Comparison of existing models of water and H$_2$ diffusivity with D_{vw} determined in this study.](2777.pdf#1957)

D_{vw} determined in this study is ~10$^{-1}$-102 times greater than D_{vw} predicted by extrapolations of the speciation model that assumes mobile H$_2$O molecules (with constant $D_{H2O(m)}$) and immobile OH groups (Fig. 2). Possible explanations include: (1) The assumption of the speciation model that $D_{OH=0}$ may be incorrect, and the value of D_{vw} as water concentration approaches zero would then reflect the mobility of OH [11]. (2) Rapid diffusion of small concentrations of dissolved H$_2$ followed by reaction of this H$_2$ with oxygen in the melt to form OH groups could lead to significant increases in D_{vw} under highly reducing conditions [14]. However, the very low dissolved H$_2$ contents expected in experiments under the conditions of our experiment would likely require a value of D_{OH} much greater than currently available estimates [13]. Also, the absence of obvious species to react with dissolved H$_2$ in the Fe-free AD composition to generate OH argues against this. (3) The difference may reflect a strong temperature or compositional dependence of D_{vw} at very low total water contents.