Introduction

Spectral datasets contain large volumes of data with variable mixtures of individual spectral endmembers. It is often difficult to identify and isolate these spectral endmembers from the data since they are not often separated from other components. Factor analysis and target transformation is a methodology that addresses this problem and can be used to both identify the number of individual components and test for the presence of and isolate individual endmembers using a set of mixed spectra [1]. This methodology has been applied to laboratory and spacecraft thermal infrared (TIR) spectral data [2-5]. Here, we have adapted and applied these techniques to visible/near-infrared (VNIR) spectral data collected by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter [6].

Methodology

Factor Analysis
- Factor analysis uses a set of mixed spectra to derive a set of orthogonal eigenvectors and associated eigenvalues to estimate the number of individual components in a system.
- The first 10 eigenvectors derived typically contain all the spectral variations present.
- We applied factor analysis to a spectral range of 120 spectral bands from 1.8–2.6 μm.

Target Transformation
- Target transformation reconstructs endmember spectra using linear combinations of the set of eigenvectors.
- The algorithm generates a least squares fit of the significant eigenvectors to laboratory spectra.
- A good spectral match indicates the mineral endmember may be present in the set of mixed spectra.

Automation
- Factor analysis can be applied to the entire CRISM data set.
- Eigenvectors are generated from a sample of every 5 pixels in a CRISM FRT.
- Target transformation is applied to a standard set of 12 spectral endmembers.

Results

Carbonates
- We tested our methodology on CRISM data containing evidence for carbonates [7-9].
- Target transformation confirms the presence of Mg-rich carbonates in Nili Fossae as previously detected by Ehlmann et al. [7] (Fig. 6).
- Figure 2 shows where we have detected additional CRISM FRTs containing Mg-carbonate in Nili Fossae.
- Target transformation also confirmed the presence of siderite in Leighton Crater [8].
- Previously identified carbonates [9] on the Huygens rim crest showed no clear match to any carbonate in the spectral library (Fig. 7).

Noise Removal
- Reconstruction of the original CRISM data using only the first significant eigenvectors (in this case 10) showed significant reductions of noise in the spectral data.
- Noise removal techniques more clearly identified regions containing high carbonate index values while lowering the noise typically present in CRISM index maps (Fig. 9).

References:

Future Work
- Target other wavelength regions to identify more characteristic endmember absorption features.
- Apply the automated technique to the global CRISM data set.
- Quantitatively isolate endmembers using Root Mean Square (RMS) values.
- Refine methodology for CRISM Multi-spectral products (MSPs).