NEAR-INFRARED SPECTROSCOPY OF 3:1 KIRKWOOD GAP ASTEROIDS: A BATTALION OF BASALTS

S. K. FIEBER BEYER1,2 AND M. J. GAFFEY1,2 (DEPT OF SPACE STUDIES, BOX 9008, UNIV. OF NORTH DAKOTA, GRAND FORKS, ND 58202. VISITING AS TRONMER AT THE IRTF UNDER CONTRACT FROM THE NASA, WHICH IS OPERATED BY THE UNIV. OF HAWAI'I MAUNA KEA, HI 96720. SHERRYFIEB@HOTMAIL.COM GAFFEY@SPACE.EDU)

Introduction:
The mineralogy, petrology, isotope chemistry, and cosmic ray exposure history revealed by laboratory study of the meteorites provides detailed insights into the relative and absolute timing of major processes operating and conditions present in the early inner solar system. However, the source regions of the individual meteorite types are poorly constrained because their specific parent bodies and hence their early solar system locations have generally not yet been identified. Mineralogical characteristics of the asteroids provide a "geologic map" of conditions and processes in the early solar system. The chronological studies of the meteorite types provide a "clock" for the relative timing of those events and processes. By identifying the source asteroids of particular meteorite types, the "map" and "clock" can be combined to provide a much more sophisticated understanding of the history and evolution of the early solar system.

The Kirkwood Gaps are zones in the asteroid belt located at proper motion resonances with Jupiter. According to several theoretical models, the bulk of meteoroids and near-Earth objects delivered to the inner solar system originate from the 3:1 and v\textsubscript{J} resonances [1-4]. The current spectroscopic investigation of the 3:1 Kirkwood Gap asteroids assumes each of the targeted asteroids is individually a potential parent body of one of a variety of meteorite types.

Analysis

The BAR value for olivine-orthopyroxene assemblages is proportional to the abundance of opx in the mixture.

The Band I position is affected by both the relative abundances of the olivine and pyroxene phases and by the composition of the pyroxene phase.

The resulting parameter space is subdivided into mineralogically distinct regions.

Pyroxene chemistries (Fs and Wo contents) were determined using formulas derived by [6] and tested against HED formulas by [8] and tested against ordinary chondrite formulas derived by [6].

The derived pyroxene compositions represent the average pyroxene mineralogy of the object being analyzed.

In order to be considered an ordinary chondrite analog, the object under investigation must have:

- ordinary chondrite pyroxene mineralogy,
- plot within the appropriate S(IV) sub-type region of the S-asteroid plot,
- and fall within an ordinary chondrite zone of the Band I vs. Band II pyroxene trendline.

Failure to meet all three criteria automatically excludes the ordinary chondrite analog possibility. Thus, other meteorite analogs must be explored.

Points to consider:

- Each are derived from partial melt residues, cumulates, or complete differentiation.
- The iron-stony-iron meteorite groups indicate a minimum of 70 discrete parent bodies.
- The crustal and mantle portions of these disrupted bodies are grossly underrepresented in the meteorite collection.
- Understanding the compositional and dynamical nature of asteroids is necessary to address:
 - attainment and exploitation of space resources,
 - impact hazards to society,
 - impact mitigation strategies,
 - biological consequences on Earth due to impact.

Acknowledgments: This work was supported by NASA NERSIF Grant NNX08AB54H (SKB) and NASA POI Program grants NNX10AB45G and NNX11AH26G (MJG). Thank you J. Biegen for her assistance in obtaining the data.

Data reduction was done using previously outlined procedures [6,7].

Assemblages in which opx is the sole/predominant spectral contributor fall along a trend with Fe2+ and Ca2+ content increasing from the lower L to the upper R.

If olivine is present in opx-bearing assemblages, the Band I center is displaced toward longer wavelength while the Band II center is unchanged.

The mafic-dominated meteorites occupy discrete zones on the Band-Band plot as shown.

To be identified as a possible meteorite assemblage, an asteroid must plot within the appropriate zone.