Experimental Study of CO$_2$ Sublimation as a Trigger for Mass Wasting

Matthew Sylvest1, John Dixon1,2, Adam Barnes3 and Gen Ito4

1Arkansas Center for Space & Planetary Sciences, University of Arkansas, 2Department of Geosciences, University of Arkansas, 3Center for Advanced Spatial Technologies, University of Arkansas, 4University of Michigan

msylvest@uark.edu

BACKGROUND

- CO$_2$ sublimation proposed source of Mars gully evolution [1]
- Proposed mechanisms for Mars gully modification by sublimation
 - CO$_2$ frost avalanches [2,3]
 - Frosted granular flow [3]
 - Sediment fluidization [4]
 - Trigger for debris avalanches [5]
- First direct experimental study of CO$_2$ sublimation as trigger for mass wasting

METHODS

- Stratified Slope Models
 - 5 – 10 mm layer of granulated CO$_2$ ice mixed in JSC Mars-1 regolith simulant
 - JSC Mars-1 base
 - 150 W halogen lamp 25 cm above slope (Fig.1)
 - 6°C ambient temperature
 - Stereo HD videography
 - Digital elevation model (DEM) & motion detection analyses

RESULTS

EVENT FREQUENCIES VS CONTROLS

-

DISCUSSION

- Variety of mass wasting styles related to surface activity
- Low activity:
 - Slope slides as single mass along basal plane (Fig.1a)
 - Surface subsidence controlled by CO$_2$ concentration (Fig.1b)
- High activity:
 - Individual particle slides dominate
 - Single particles trigger larger-scale movements
 - Infrequent formation of pits and scarps
- Water frost developed on slope surfaces (Figs. 1b & 2)
 - Unquantified influence on surface morphology & activity
 - Locally enhanced stability due to increased surface cohesion
 - Decreased stability due to additional mass

CONCLUSIONS

- CO$_2$ Sublimation can trigger small-scale mass wasting.
- Frequency of trigger events increased by (Fig.4):
 - Steeper mean slope angles
 - Increased initial CO$_2$ ice mass
 - Decreased ambient temperature
 - Increased relative humidity

REFERENCES

ACKNOWLEDGEMENTS

This work was funded in part by the Fulbright College of Arts & Science, University of Arkansas, Fayetteville, AR. We thank the Center for Advanced Spatial Technologies for photogrammetric services, and C. Owens, Center of Excellence for Poultry Science, for use of laboratory space.