ALLENDE 10 B 41: MEGACHONDRULE, OR IMPACT MELT CLAST?

E. S. Bullock¹, N. G. Lunning² and T. J. McCoy¹. ¹Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. Email: BullockE@si.edu. ²Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996.

Introduction

Recent examination of the Allende CV3 carbonaceous chondrite revealed a large, rounded object, ~1.6cm in diameter (figure 1), designated “Allende 10 B 41”. Initial examination of this object shows similarities to objects found in other chondrites known as “mega-chondrules” [e.g. 1-3]; however there are several differences compared to typical chondrules. Here we explore the possibility that this object instead represents an impact melt clast within a CV3 chondrite.

Method

FEI NOVA NanoSEM 600 SEM: bulk compositional data & BSE images.
Jeol 8900 Superprobe: Quantitative chemical data for major elements.

Results

Olivine: coarse-grained, normal zoning from Fo₆₃-₈₈, same range in the core and towards the edge (figure 2, 5, 6).

Pyroxene: Coarse-grained, augite.

Chromite: Small (~50 μm)

Opaque material: Fe metal/magnetite fills fractures within olivine (figure 6).

Bulk composition: see Table 1, consistent with bulk Allende [4]. Ratios of Ca/Al and Mg/Si consistent with bulk Allende [4], but not with typical chondrules.

Discussion

Initially thought to be a “megachondrule” based on rounded shape and porphyritic texture, BUT some key differences:

- Lack of fine-grained rim
- Bulk composition closer to bulk Allende than to typical chondrules (Table 1; data from [4]).
- Mg/Si ratio consistent with melt formed from bulk Allende
- Localized melting has been shown to produce very similar textures to those shown here [5].

Was it molten?

Yes, based on porphyritic texture and smooth zoning profiles within olivine grains.

Coarse grain size suggests either slow cooling or a lack of nucleation sites.

Presence of normally zoned olivine crystals in direct contact with matrix suggests this was once a larger object that underwent comminution before incorporation into the parent body (figure 5).

Table 1. Bulk composition of 10B41 versus average bulk composition of Allende and typical Allende chondrules (wt% oxide) [4], ratios for Ca:Al & Mg:Si.

<table>
<thead>
<tr>
<th></th>
<th>Allende 10 B 41</th>
<th>Bulk Allende</th>
<th>Chond. “A”</th>
<th>Chond. “C”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>1.12</td>
<td>0.45</td>
<td>0.11</td>
<td>10.6</td>
</tr>
<tr>
<td>MgO</td>
<td>28.46</td>
<td>24.62</td>
<td>10.82</td>
<td>15.17</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.34</td>
<td>3.27</td>
<td>31.61</td>
<td>17.78</td>
</tr>
<tr>
<td>SiO₂</td>
<td>40.24</td>
<td>34.23</td>
<td>29.79</td>
<td>40.19</td>
</tr>
<tr>
<td>CaO</td>
<td>3.16</td>
<td>2.61</td>
<td>26.76</td>
<td>5.28</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.09</td>
<td>0.15</td>
<td>0.99</td>
<td>0.12</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.39</td>
<td>0.52</td>
<td>0.06</td>
<td>0.19</td>
</tr>
<tr>
<td>MnO</td>
<td>0.16</td>
<td>0.18</td>
<td>0.02</td>
<td>0.1</td>
</tr>
<tr>
<td>FeO</td>
<td>22.66</td>
<td>27.15</td>
<td>0.37</td>
<td>8.77</td>
</tr>
<tr>
<td>Ca/Al</td>
<td>0.98</td>
<td>1.1</td>
<td>1.14</td>
<td>0.4</td>
</tr>
<tr>
<td>Mg/Si</td>
<td>0.92</td>
<td>0.93</td>
<td>0.47</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Figure 6. Olivine with metal/magnetite stringers. Field of view = 1mm.

So: how did this clast form? Possibly by shock. Although Allende has a shock grade S1, well below that required for minimum melting, it does contain some olivine grains that exhibit planar fractures, a shock feature [6, 8].

If this clast is an impact melt, it potentially could have formed prior to accretion, and undergone fragmentation and rounding before incorporation into the Allende parent body.

What next?

Future analysis of the oxygen and Al-Mg isotopic systematics will help to determine whether this is a megachondrule or an impact clast.
