MANGANESE-RICH OLIVINE IN AMOEBOID OLIVINE AGGREGATES (AOAS): IMPLICATIONS FOR FORMATION AND ALTERATION CONDITIONS.

M. Komatsu1, T. J. Fagan1, and T. Mikouchi2.

Department of Earth Sciences, Waseda University, Tokyo, Japan 169-8050 (komatsu@aoni.waseda.jp), 2Department of Earth and Planetary Science, University of Tokyo.

Introduction

Amoeboid olivine aggregates (AOAs) are irregularly shaped, fine-grained objects that constitute a few percent-volume of meteorites in most carbonaceous chondrite groups. Mineralogical and chemical compositions of AOAs are similar to those predicted by equilibrium thermodynamic condensation models [e.g., 1, 2], suggesting that AOAs formed primarily by gas-solid condensation [3].

It has also been shown that some AOAs contain olivines with Mn-rich compositions similar to low-iron Mn-enriched (LIME) olivine [4]. LIME silicates have wt% MnO/FeO > 0.1, and usually < 1.0 wt% FeO, and are interpreted as condensates that preserve the redox state of solar nebula gas [5]. The MnO/FeO ratio of Mn-rich olivine in AOAs is not as high as in LIME olivine, but it is likely that the formation of Mn-rich olivine is related to LIME olivine. In this study, AOAs in ungrouped carbonaceous chondrite NWA 1152 and the CO chondrite Y-81020 were examined and compared to those from reduced CV chondrites [6], oxidized CV chondrite Y-86009 and Allende [7], and CO chondrites [8].

Mineralogy

AOAs are irregularly shaped, 10 to 100 µm across in thin section, and consist of aggregates of fine-grained olivine, Al-diopside, spinel, and blebs of FeNi metal and magnetite (Fig. 1). No phyllosilicates were observed. These AOAs are texturally similar to those in reduced CV chondrites [9] and CR chondrites [4].

1. Mineralogy AOAs in NWA 1152

AOAs from NWA 1152 are texturally similar to AOAs from Efremovka and Leoville (e; reduced CV [6]), and AOAs from Y-86009 (c; Allende type oxidized CV [7]) (Fig. 3a).

The AOAs are similar to those in reduced CV chondrites and CR & Wild 2 cometary particles [14] (b), AOAs from Y-86009 (c; Bali-type oxidized CV [7]), AOAs from Efremovka and Leoville (e; reduced CV [6]), and Allende (f; Allende type oxidized CV) (g).

Mineral Chemistry

Mn-rich olivine is observed in AOAs from Y-81020 and Y-86009. In the NWA 1152 AOAs, several olivine analyses show enrichments in MnO, with MnO/FeO approaching 1.0 (Fig. 4). These compositions are similar to LIME olivine.

Thermodynamic models show that LIME-like olivine in AOAs can form by gas-solid reactions as temperature declines to near 1100 K [1, 2]. The model of Ebel et al [5] indicates that Mn-rich, Fe-poor olivine forms under relatively low oxygen fugacities (solar composition, no dust enrichment).

2. Alteration characteristics of AOAs and relation to Mn-rich olivine

When the Mn-rich olivine is present in AOAs, it occurs at the edges of the inclusion. This is consistent with the condensation calculation that predicts Mn-enrichment with decreasing temperature [13]. Although Mn-rich olivine is observed in Y-86009 CVoXB, it is not observed in reduced CV chondrites and Allende.

These two types of meteorites experienced some (reduced CV) and high degree (Allende) of thermal alteration. It has also been shown that the rimmed AOAs which experienced annealing after aggregation tend to have lower Mn contents [13]. This is consistent with our prediction that Mn was lost by heating. It is likely that Mn-rich olivine was originally present in many AOAs as a primary phase, and then lost during the thermal processing. Therefore, Mn-rich olivine in AOAs can be a sensitive indicator for the thermal processes such as annealing in the solar nebula [13] and parent body thermal alteration.

Discussion