Ar/Ar Systematics of Martian Meteorite NWA 2975

F.N.Lindsay^{1*}, J. Osmond², J.S.Delaney¹, G.F.Herzog¹, B.D.Turrin², J.Park^{1,3} and C.C.Swisher, III² ¹Dept. Chem.& Biol.Chem., Rutgers University; ²Dept. Earth Planet. Sci., Rutgers University; ³Lunar Planet. Inst.

Experimental Conditions

We chose 7 grains based on relatively high [K] as found by semi-quantitative energy dispersive spectroscopy (EDS) work. The grains were irradiated (with Cd shielding) for 80 h at the USGS Triga reactor and heated in 7 - 10 steps with a CO_2 laser ($T_{max} = 1400 \, ^{\circ}C$). Ar isotopes were analyzed using a MAP 215-50 spectrometer operated in pulse-counting mode. A typical system blank (10^{-17} mol) is: 40 Ar= 8.21; 39 Ar= 0.37; 38 Ar= 0.03; 37 Ar= 1.35; ³⁶Ar= 0.13. Fish Canyon sanadine (28.2 Ma) was used as a flux monitor.

Introduction

NWA 2975, an enriched martian basaltic shergottite, is highly shocked and relatively unweathered^{1,2}. The maskelynized plagioclase in its groundmass is homogenous and usable for geochronological studies. We use NWA 2975 maskelynite to address the conundrum of martian Ar-Ar ages that are older than Sm-Nd ages. Our approach uses smaller samples (single grains) to study the Ar-Ar systematics of this meteorite.

Grains

Backscatter electron images and energy dispersive spectra of single maskelynite grains.

Plateau Diagrams

Apparent ages range from 294 to 410 My.

Wtd. avg. is 314 ± 7 My.

Ages are concordant with total fusion ages.

All samples give apparent ages older than Sm-Nd values of ~ 180 My³.

Isochrons

A standard isochron, with no corrections (left graph), yields an age of 352 ± 20 My. The inset shows the same isochron without the high outlying point, in which case, the age decreases to 304 ± 29 My. In both cases, the intercept is 0, within error (1σ). Calculating the cosmogenic 36 Ar, 36 Ar, by assuming that the minimum measured ³⁶Ar/³⁷Ar represents purely cosmogenic ³⁶Ar, we can fit the isochron by using only the trapped component of ³⁶Ar for both ratios (right graph). This decreases the age slightly to 337 ± 92 My, yet retains an intercept of zero, indicating no trapped 40Ar (points with unreliable 36/37Ar are omitted).

Summary

⁴⁰Ar/³⁹Ar ages of maskelynite grains are ~325 My. Cosmogenically corrected isochron shows no evidence of excess ⁴⁰Ar and gives an age of 337 My.

Conclusions

A shock event reset the maskelynite grains sometime before 290 My.

This event is not the same as the launching impact event.

The discrepancy between the Ar-Ar and Sm-Nd systems is real, but not yet understood.

Smaller samples capture fine-scale heterogeniety within martian meteorites.

[1] Sanborn & Wadhwa (2010) 73rd METSOC # 5294; [2] Connolly et al. (2006) Met. Bull., 90:1387; [3] Park et al. (2013) $In^{40}Ar/^{39}Ar$ dating: from geochronology to thermochronology, from archaeology to planetary sciences. In Press.