Research and Technology Studies (RATS) 2012 Mission Overview

Barbara A. Janoiko¹, James E. Johnson¹, Marcum L. Reagan¹, Michael L. Gernhardt¹, and Andrew F. J. Abercromby²

¹NASA Johnson Space Center, Houston, TX ; ²Wyle Science, Technology & Engineering Group, Houston, TX

Introduction

Research and Technology Studies (RATS) is an integrated test activity that has taken place since 1997 to exercise prototype human exploration hardware in representative mission operation scenarios. Such activities not only test the subsystems of new prototype exploration vehicles, but they also stress communication systems and evaluate science operational concepts that will advance human and robotic surface exploration capabilities for exploration beyond low Earth orbit.

RATS advances human and robotic exploration capabilities.

Test Overview

The primary focus of the 15th RATS mission was to continue evaluation from Desert RATS 2011 of several different exploration strategies for a manned near-Earth asteroid (NEA) mission using a high-fidelity simulation. Following week-long engineering evaluations in December 2011 and January 2012, the final test took place August 16-30, 2012 and for the first time in RATS history, was conducted completely at Johnson Space Center and not in a remote field location.

RATS Motto: “Build a little, test a little”.

The Facilities

RATS 2012 leveraged 5 facilities at Johnson Space Center to support the integrated test in August: the Active Response Gravity Offload System (ARGOS), virtual reality (VR) laboratory, simulated Deep Space Habitat (DSH) workstation, Analog Mission Control Center (AMCC), and NEA simulation. The Air Bearing Floor (ABF) and Manned Maneuvering Unit (MMU) trainer were also used during the December and January engineering evaluations.

RATS testing enables integration of unique NASA facilities.

Multi-Mission Space Exploration Vehicle (MMSEV)

The 2nd generation MMSEV is the third prototype space exploration vehicle to be developed and is an intermediate step between the 1st generation concept development vehicles and the 3rd generation vehicles that will be designed and built as protoships capable of being flown in space. In addition to supporting the test as a NEA exploration platform, the 2nd generation MMSEV underwent preliminary habitability and human factors testing with 2-person crews conducting a total of 4-3 day, 2-night stays during both the engineering evaluation and integrated test.

RATS has assisted in maturing MMSEV design over 5 years of testing.

NEA Simulation & Virtual Reality Laboratory

The RATS 2012 test utilized a high-fidelity, physics-based human-in-the-loop (HTL) simulation to assess exploration operations of a MMSEV and extravehicular activity (EVA) crew in proximity to the asteroid Itokawa. Asteroid data used in the simulation was provided by JAXA. In order to assess the effectiveness of integrated operations, the simulation was coupled between the MMSEV cabin and the VR Lab.

RATS 2012 was the first analog test to leverage computer-based simulation.

Test Conditions

To evaluate the most advantageous approaches to manned NEA surface exploration, four test conditions were created for each of two different operational modes: free-flying operations assumed the MMSEV would “fly” in proximity to the NEA surface while anchored operations assumed the MMSEV would be attached to the NEA surface. For each condition, RATS crew would be assigned a particular role: MMSEV pilot, intravehicular (IV) support from MMSEV or DSH, or EVA crew. The crew evaluated the effectiveness of each condition, the role they served, and the capabilities they utilized (e.g., simulated EVA jetpack) to identify suitable methods for NEA surface exploration.

RATS inspires and engages the public in future exploration.

Outreach

Education and Public Outreach (EPO) activities were conducted throughout the RATS test to inform, educate, and engage the public. In addition to live outreach events on NASA TV and through Challenger Learning Centers, one day of the test was dedicated to media and VIP tours and interviews.

Primary Test Objectives

There were six primary objectives for the 2012 RATS mission:

1. Execute 10 days of simulated NEA human exploration conditions comparing combinations of IV and EVA crew over different operational modes with a 50 second one-way communications latency.
2. Exercise the integrated NEA simulation from the Gen 2A MMSEV and VR Lab.
3. Evaluate the Mark III mock-up suite & suit port interface plate (SPIP) with Gen 2A MMSEV cabin to evaluate suit port human factors.
4. Use ARGOS and the VR laboratory to test NEA EVA sampling and translation techniques in simulated microgravity.
5. Exercise interaction between EVA simulation(s) and MMSEV and DSH IV crewmember(s), and

Technology Demonstration

In addition to evaluating the primary objectives of NEA operations and architectural design questions, a 3 kW regenerative fuel cell was intermittently used to power the Gen 2A MMSEV cabin as a technology demonstration. Product water from the fuel cell was then used to assist in the evaluation of a prototype exploration electrolyzer.

RATS advances technology through integrated demonstrations.

Results & Conclusion

Testing results and conclusions are compiled by the Exploration Analogs Mission Development (EAMD) Team and are documented in the NASA Research and Technology Studies (RATS) 2012: Evaluation of Human and Robotic Systems for Exploration of Near-Earth Asteroids poster (#1671).

References


Want more information?

E-mail us: barbara.a.janoiko@nasa.gov
http://www.nasa.gov/exploration/analogs/desert_rats.html
Follow us: http://twitter.com/desert_rats
Like us: http://www.facebook.com/ - NASA-Desert-RATS