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Introduction:  The current understanding of the 

chemical structure and the nature of the insoluble or-
ganic carbon (IOM) in carbonaceous chondrites comes 
primarily from studies of its Raman spectra (e.g. [1]). 
The chemical structure of the IOM has been linked to 
the metamorphic history of chondrites (e.g. [2]). The 
majority of these studies use a model (e.g. [3]), to fit 
their Raman spectra. Fitting a Raman spectrum with a 
model gives us important spectral parameters, e.g. full 
width at half maximum, peak position, and peak inten-
sity, which have been correlated with chemical struc-
ture information, e.g. maturation grade, disorder, or 
defect density [4]. 

It is important to determine if the fitting procedures 
used are producing good fits and reasonable uncertain-
ty values of the modeled spectrum parameters. Rea-
sonable uncertainties are important for understanding 
if the IOM is chemically homogenous for a given me-
teorite. If uncertainty values are overestimated, then 
information about the IOM is lost. If uncertainties are 
underestimated we can be tricked into thinking that the 
sample is heterogeneous. Therefore, it is important to 
determine the correct uncertainty in every measure-
ment we perform. 

The Raman spectrum fitting function used in our 
work [5] is based on the fitting procedures in use ex-
tensively in the literature to describe graphite-like ma-
terials [3, 6]. Essentially, the D-band is fit using a Lo-
rentz line shape (Eqn 1), and the G-band is fitted using 
an asymmetric Lorentz line shape called the Breit-
Wigner-Fano (Eqn 2) function. 
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The variables of FL and FBWF correspond to the spectral 
parameters of the D- and G-bands. The variables I1 and 
I2 are the intensity, ωD and ωG are the peak positions, 
and δ and γ are the peak widths of the D- & G-bands, 
respectively. Q is asymmetry factor of the G-band. 

Generally, spectra seen in studies of IOM of the 
aqueously altered meteorites have interference from 
high fluorescence background. The source is an un-
known organic chemical compound or mix of chemical 
compounds that varies from spectrum to spectrum. 
This suggests that the background is a superposition of 
multiple peaks. A full understanding of the fluores-

cence phenomena in meteorite samples is likely impos-
sible because the nature of the source is unknown and 
variable. Typically, the background for a small spectral 
window containing the relevant peaks is subtracted 
using a line. We show that this not an accurate repre-
sentation of a general fluorescence background. A 
more robust technique that allows for the subtraction 
of any continuous function is required to accurately 
model the Raman parameters of the sample. 

Second Derivative Fit to Remove Background 
Fluorescence: Rather than applying a linear back-
ground subtraction, we propose Savitzky-Golay Sec-
ond Derivative (SGSD) fitting. SGSD removes the 
effect of any smoothly varying background fluores-
cence component from the Raman spectrum fits. It is 
necessary to smooth the noisy Raman spectrum before 
calculating the second derivative. We found that Sa-
vitzky-Golay smoothing [7] with a 2nd order smoothing 
function and a window size of ~27 for our data [8] 
retains the important Raman spectral structure while 
greatly reducing the noise. 

To assess the accuracy of this method compared to 
the traditional linear-background-subtraction method, 
we generated a simulated Raman spectrum around the 
D and G band with a smoothly varying background of 
different functional forms (e.g. linear, logarithmic, 
exponential) and added ~1% noise. Selected variables 
from the results of our simulations are given in Table 
1. Figure 1 shows an example of simulated data with a 
Table 1 

Linear Background 

Variable Actual SGSD Std. 
Dev. 

Linear 
Subtract 

Std. 
Dev. 

δ 240 259.69 16.8 240.63 8.19 

γ 230 252.37 7.12 230.23 5.38 

I1/(I2 γ) 1.087 1.069 0.151 1.093 0.104 

Linear-Logarithmic Background 

δ 240 261.46 13.6 397.27 312.01 

γ 230 253.71 6.46 323.80 89.11 

I1/(I2 γ) 1.087 1.079 0.136 1.347 1.136 

Inverse Hyperbolic Cosine Background 

δ 240 263.31 7.01 275.53 4.13 

γ 230 254.18 2.66 233.43 2.60 

I1/(I2 γ) 1.087 1.078 0.063 1.360 0.064 
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linear-logarithmic fluorescence background. The simu-
lated data is fitted using the linear-background subtrac-
tion model (red). Figure 2 is the 2nd-derivative of the 
same data with the SGSD fit (blue). To first order, it 
appears that the fit in Figure 1 is adequate, but we see 
in Table 1 that it is not accurate and tends to have poor 
precision. The fit of the second derivative peaks in 
Figure 2 also looks adequate, and Table 1 confirms 
that it is accurate. Table 1 shows that the linear-
subtraction model works as well or better than the 
SGSD method when the background is linear. Howev-
er, when the background type deviates from linear, 
SGSD tends to retain the actual simulated values much 
better with good precision. 

Monte Carlo Uncertainty Estimation: We seek 
uncertainties of the spectral parameters (e.g. peak posi-
tion, peak width) given in Eqns 1 and 2. Traditionally, 
the fit parameters and their uncertainties have been 
calculated using a curve-fitting computer algorithm, 
such as the IDL procedure CURVEFIT. CURVEFIT 
uses a chi-squared (χ2) minimization technique that 
requires the user to provide an array of weights (typi-
cally equal to the squared inverse of the 1σ measure-
ment uncertainty) and a fitting model. A common mis-
take is to perform an “unweighted fit” by setting all 
these weights equal to one. This is equivalent to as-
signing an uncertainty of one to each measured data 
point (most Raman spectra are recorded in units of 
CCD counts). However, the actual measurement uncer-
tainty of each point is much larger than one count be-
cause of signal noise. If CURVEFIT calculates the 
best-fit model parameters based on the unweighted fit, 
the resulting χ2 value is far too large. The uncertainty 
values on the parameters returned by CURVEFIT are 
computed when χ2 increases by one. Since χ2 is far too 
large, these uncertainties are greatly underestimated. 

To obtain a better estimate of the model parameter 
uncertainties, we propose the following technique 
based on a Monte Carlo bootstrap method [9]. We 
generate an array of empirical uncertainties (σi) by 
computing the distance between each measured data 
point and the Savitzky-Golay smoothed spectrum. 
From this array, we randomly draw values (allowing 
repeats) that we add to the original smoothed spectrum. 
Using this new simulated data spectrum, we recalcu-
late our 2nd derivative fit parameters as described 
above. Repeating this process 103 times yields 103 val-
ues for each fit parameter. The 2σ uncertainty of our fit 
parameters is simply twice the sample standard devia-
tion of these 103 values for each parameter. 

Conclusions: We proposed that the SGSD method 
can be applied to Raman spectra of the insoluble or-
ganic matter in carbonaceous chondrites. SGSD pro-

duces fits with greater accuracy than the chi-squared 
minimization techniques when fitting non-linear back-
grounds. Precision on the modeled spectral parameters 
are estimated using the Monte Carlo bootstrap method. 
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