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Introduction: Amoeboid olivine aggregates 
(AOAs) are refractory objects composed of Al,Ti-
diopside, anorthite, spinel, Ca,Al-rich inclusions 
(CAIs), and forsterite condensates. The mineralogy, 
petrography, thermodynamic analysis, O- and Al-Mg 
isotope systematics of AOAs suggest they formed to-
gether with CAIs during the earliest stages of the Solar 
System evolution, and, therefore provide important con-
straints on the physico-chemical conditions and isotope 
heterogeneity in the solar nebula [13]. CAIs in most 
chondrite groups have 16O-rich compositions (17O < 
20‰) and (26Al/27Al)0 of (45)105 [4]. In contrast, 
CH CAIs show a bimodal distribution of (26Al/27Al)0 
and a large range of O-isotope compositions: about 80% 
of CH CAIs are very refractory (dominated by grossite, 
hibonite, gehlenitic melilite, perovskite, and Al-rich 
pyroxene), 16O-rich (17O < 20‰) and 26Al-poor 
[(26Al/27Al)0 <106]; ~10% (typically less refractory) are 
similarly 16O-rich, but have (26Al/27Al)0 of (45)105 
[58]; ~10% are uniformly 16O-depleted (17O ~ 
10‰) [9]. The nature of O- and Al-Mg isotope diver-
sity of CH CAIs is not understood; it may reflect prima-
ry O and 26Al heterogeneity in the solar nebula or late-
stage resetting of their O and/or Al-Mg isotope system-
atics. To understand the nature of O-isotope and 
26Al/27Al variations in CH refractory objects, we inves-
tigated the mineralogy, petrography, and O-isotope 
compositions of the CH AOAs (Figs. 1, 2). 

Results: AOAs are less common in CH chondrites 
than CAIs; only 28 AOAs were identified in 10 pol-
ished sections mapped with a high spatial resolution (<5 
m/pixel) in BSE and x-rays. The mineralogy and pe-
trography of AOAs were characterized with the UH 
field emission JXA-8500F electron microprobe. 16O, 
17O, and 18O were measured in situ using the UH Came-
ca ims-1280 in multicollection mode (FC, EM, and EM, 
respectively) with ~12 µm spot size (see [10]). 

The CH AOAs are mineralogically pristine (show 
no evidence for alteration or thermal metamorphism) 
and composed of nearly pure forsterite (Fa<3; CaO = 
0.10.8, Cr2O3 = 0.050.38; MnO <0.46 wt%), anor-
thite, spinel, Al-diopside (Al2O3 = 0.728.1; TiO2 <1 
wt%), Fe,Ni-metal, and, occasionally, CAIs (Fig. 2). 
None of the CAIs within AOAs are very refractory; 
they consist of Al,Ti-diopside (Al2O3 up to 19.6; TiO2 
up to 13.9 wt%), spinel, melilite (Åk1344), and rare per-
ovskite (Fig. 2a). Two AOAs contain low-Ca pyroxene 
(Fs1Wo23) replacing forsterite (Fig. 2b). Oxygen-
isotope compositions of forsterite, anorthite and melilite 
in CH AOAs are shown in Fig. 1. The AOAs have iso-
topically uniform 16O-rich compositions (17O = 
23.5±2.2‰) and on a three-isotope oxygen diagram 

plot along ~slope-1 line. The only exception is the low-
Ca pyroxene-bearing AOA #1-103 (Fig. 2b) showing a 
range of 17O values (24.3‰ to 15.2‰). None of the 
AOAs have 16O-depleted compositions, like many CH 
CAIs [9], or very 16O-rich compositions, like two gros-
site-rich CAIs from the CH chondrite Isheyevo [7, 8]. 

We infer CH AOAs originated together with CAIs 
in a 16O-rich gaseous reservoir. Most AOAs have expe-
rienced thermal annealing in the solar nebula, but 
avoided extensive melting. Therefore, it seems likely 
that CH AOAs recorded distribution of 26Al in the CAI-
forming region during their formation, and, therefore, 
may provide a clue for the bimodal distribution of 
(26Al/27Al)0 among 16O-rich CH CAIs. SIMS measure-
ments of 26Al-26Mg systematics of CH AOAs are in 
progress. 

Fig. 1. Oxygen-isotope compositions of the CH CAIs [79] 
and AOAs. an = anorthite; fo = forsterite; mel = melilite. 
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Fig. 2. BSE images of AOAs from the CH chondrite Acfer 214. The AOAs show large variations in modal abundances of the
major minerals – forsterite (fo), anorthite (an), Al,Ti-diopside (cpx). Fe,Ni-metal (met) is generally minor and occurs as inclu-
sions in forsterite. AOA #1-103 (b) contains low-Ca pyroxene (px) replacing forsterite. AOA #4-113 (a) contains melilite-rich
compact Type A CAIs composed of melilite (mel), spinel (sp), and perovskite (pv), and rimmed by Al,Ti-diopside. Most AOAs
have compact textures and appear to have experienced prolonged high-temperature annealing and possibly melting to a low de-
gree. SIMS spots are indicated by yellow lines. 
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