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Introduction: The ancient Martian orthopyroxe-
nite ALH 84001experienced a complex history of im-
pact and aqueous alteration events. Treiman [1] identi-
fied petrographic evidence for its involvement in four
or five crater-forming impacts following its initial
crystallization “in a body of magma somewhere be-
neath Mars’ surface”. Adopting his relative chronology
of events, fractured, granular bands present in
ALH84001 were formed in an early (first?) impact
event. The accompanying thermal metamorphism ho-
mogenized mineral compositions and probably was
accompanied by production of feldspathic glass from
igneous feldspars. In a later event, fractures in the
granular bands became hosts to carbonate rosettes that
often are found in association with the feldspathic
glass. Sm-Nd studies [2,3] yielded ages of ~4.5 Ga,
and carbonate formation was dated at 3.90+0.04 Ga by
the Rb-Sr method and 4.04+0.10 Ga by the U-Th-Pb
method [4]. The Sm-Nd ages have been cited as giving
the time of igneous crystallization of ALH84001, an
interpretation challenged by [5] on the basis of an ~4.1
Ga Lu-Hf age.

Here we summarize *’Sm-**Nd and ***Sm-**Nd
analyses performed at JSC. Further, using REE data
[6-8], we model the REE abundance pattern of the
basaltic magma parental to ALH84001 cumulus ortho-
pyroxene. We find the ***Sm-*>Nd isotopic data to be
consistent with isotopic evolution in material having
the modeled Sm/Nd ratio from a time very close to the
planet’s formation to igneous crystallization of
ALH84001 as inferred from the Sm-Nd studies.
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Figure 1. *’Sm-1*3Nd isochron plot for bulk samples and
mineral separates of ALH84001. The isochron is fit to JSC
data. Data from [5] adjusted for differing normalizations
are shown for comparison.

17Sm-*3Nd: Fig. 1 shows results for *’Sm-"*Nd
analyses at JSC of 22 bulk samples and mineral sepa-
rates. An isochron fit (Isoplot model 1 [9]) gives an

age of 4.568+0.088 Ga (2c) and gng = +1.240.8 rela-
tive to a Chondritic Uniform Reservoir (CHUR, [10]).
These values are within uncertainty of those originally
reported for five bulk samples and a pyroxene separate
[3]. We attribute an apparently irreducible scatter in
the *’Sm-***Nd data (MSWD ~ 100) to post-magmatic
disturbance of the Sm-Nd system.

A more restricted set of Sm-Nd data from [5] is in
good agreement with our own. An isochron fit to four
data presented by [5] (S2-S3-S4-R1) gives an age of
~4.63 Ga. (Their bulk rock leachate datum (L1) is
omitted from the regression). Tentatively adopting the
~4.09 Ga Lu-Hf age as the crystallization age and or-
thopyroxene as an end-member component on a hypo-

thetical mixing line results in a calculated gng ~+5 for
orthopyroxene data from both labs implying a source
of the ALH84001 parental magma depleted in LREE.
165m-12Nd: Fig. 2 shows Isoplot model 1 results
for data for 16 samples yielding initial ***Sm/***Sm
(1(Sm)) = 0.0031+0.0009 and £***Nd = -0.36+0.12 at
CHUR *Sm/*Nd = 0.1967 [10]. Elevated values of
¢*’Nd >0 for the pyroxenes and £**Nd <0 for samples
of low *'Sm/***Nd, particularly for leachate Opx(L)
(~phosphates) and bulk rock samples, are inconsistent
with the ~4.09 Ga Lu-Hf age. MSWD = 5.1 shows
these data to be much less disturbed by post-magmatic
reheating than the **’Sm-**3Nd data, probably because
events later than ~4.1 Ga are not registered. The age
calculated relative 1(Sm)=0.0076 and T=4.558 Ga for
angrite LEW 86010 (equivalent to 1(Sm)=0.0081 at T
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Figure 2. ¥6Sm-22Nd data for bulk samples and mineral
separates of ALH84001.
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= 4.568 Ga) is T=4.425 +0.039/-0.054 Ga. Alterna-
tively, for the newly determined halflife of *°Sm (ty,
= 68 Ma [11]) and I(Sm)=0.0084 at 4.568 Ga, the cal-
culated relative age of ALH 84001 is 4.470 +0.035/-
0.026 Ga. £*°Nd = -0.23+0.05 reported by [5] for a
large (~1 gm) bulk sample (B1) is consistent with this
isochron if *’Sm/*Nd (not measured), is estimated
from its measured '*Nd/***Nd ratio. £“’Nd =
+0.1920.13 previously reported by [12] for a bulk
sample is not plotted because *'Sm/***Nd was not
measured. However, we do not consider this analysis
to be inconsistent with the ***Sm-***Nd isochron be-
cause bulk (“WR”) samples range up to **’Sm/***Nd
~0.3 as required by this analysis (Fig. 1). Taken to-
gether, the ***Nd analyses of [5] and [12] are incon-
sistent with a nearly flat isochron as required by an age
of ~4.1 Ga.

Modeled REE abundances in parent melt: In
Fig. 3, solid symbols represent REE patterns for ortho-
pyroxene samples from AHL 84001, taken from ion
microprobe analyses of mineral grains [7, 8] and ICP-
MS analyses of orthopyroxene separates [6]. Open
symbols represent REE patterns for melts parental to
the orthopyroxene as calculated using the average of
seven sets of REE distribution coefficients in Opx [6,
13, 14]. The calculated parental melts are high in REE
abundances, are LREE-enriched, and have an average
17Sm/**Nd of 0.17+0.01. The REE pattern of Martian
crust [15] and NWA 7034 [16] are also plotted for
comparison. The calculated REE abundances in the
parental melts match those estimated for the Martian
crust very well. Similarly high REE abundances occur
in NWA 7034 [16], but differ by being slightly higher
in overall REE abundances and having a negative Eu
anomaly. Interestingly, *’Sm/**Nd = 0.171 in NWA
7034 [16] equals that in the estimated Martian crust.

Nd isotopic evolution prior to the parent melt:
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Figure 3. Modeled REE abundances in ALH84001 parent
melt.
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Fig. 4 shows the *’Sm-'**Nd (upper) and ***Sm-"**Nd
(lower) results (yellow parallelograms). Red and green
(for [11]) curves show Nd isotopic evolution from an
HED (Howardite-Eucrite-Diogenite) or Earth-like par-
ent body at T = 4.568 Ga for *’Sm/***Nd = 0.17+0.01.
Because the *’Sm-'*3Nd isochron was disturbed, the
age it suggests may be biased to a value somewhat too
old. The ***Sm-**Nd isochron probably represents a
better estimate of a magmatic age of 4.4-4.5 Ga for
ALH 84001. The modeled ***Nd evolution is consistent
with a LREE-enriched source as calculated for the par-
ent magma from the REE abundances in pyroxene.
Conclusions: We tentatively identify disturbances
evident in the Sm-Nd data with the early, strong de-
formation and thermal metamorphic event identified
texturally [1]. This event likely reset the Lu-Hf age,
and other ages for radiometric systems less robust than
Sm-Nd. The Sm-Nd system is particularly robust as
demonstrated most recently for chondrites [17] be-
cause both the isotopic parent and daughter are REE.
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Figure 4. Modeled Nd-isotopic evolution between Mars'

formation and crystallization of ALH84001.



