
USING PYTHON, AN INTERACTIVE OPEN-SOURCE PROGRAMMING LANGUAGE, FOR
PLANETARY DATA PROCESSING. J. Laura1,2, T. M. Hare2, and L. R. Gaddis2, 1School of Geographical
Sciences and Urban Planning, Arizona State University, Tempe, AZ; 2Astrogeology Science Center, U.S. Geological
Survey, Flagstaff, AZ. (jlaura@asu.edu).

Introduction: Python is an open-source program-
ming language ideally suited to perform planetary data
analysis, processing, and exploration. Python is epi-
tomized by rapid code development, an iterative work-
flow, and source readability. Python offers a variety of
freely available libraries to generate interactive visual-
izations, perform complex data analysis, and collabor-
atively share repeatable results with colleagues. Here
we describe the use of Python as a language for de-
velopers and describe the key features of Python for
planetary researchers. We then discuss three use cases
for which Python has provided an ideal development
and deployment environment: as a language used to
develop a stand-alone image analysis suite, as an inter-
active environment for data exploration, and as a de-
velopment platform for small scale data visualization
and large scale model derivation.

Python is Ideal for Developers: Python provides a
rapid, interactive development environment that does
not require code compiling. This environment fosters a
simple workflow (e.g., implement, test, refactor, util-
ize) that facilitates efficient code prototyping and de-
livery. For example, code can be rapidly developed
and delivered with loose requirement specifications,
then iteratively refactored with input from science
users as needs are refined. Python is easily learned by
new users because of two development principles: (1)
code should be human readable and (2) code should be
explicit in its implementation [1].

Python offers a variety of open-source code librar-
ies that can greatly simplify development. NumPy
(Numerical Python) and SciPy (Scientific Python)
provide a suite of tools for working with raster (array)
data suitable for image analysis. GDAL (Geospatial
Data Abstraction Library) provides access to over 120
image data formats, including PDS, ISIS2/3, FITS,
ENVI, Jpeg2000, Png and Tiff [2]. MatPlotLib, Pan-
das, and Basemap libraries provide standard and carto-
graphic data visualization tools. Taken together, these
libraries integrate into a highly effective processing
suite for scientific data exploration, visualization, and
analysis.

 Python's relatively slow dynamic code execution
speed compared to traditional compiled languages is an
oft-cited shortcoming [3]. However, Python provides
multiprocessing options that allow for rapid imple-
mentation of high level multi-core code. Additionally,
many Python libraries are wrappers for underlying C
code, which offers improvements in speed. NumPy, for

example, is optimized for high-speed, vectorized com-
putation using well known C libraries.

Finally, the ability to rapidly develop code in Py-
thon means that it is an ideal sandbox language that
supports code and algorithm testing prior to imple-
mentation in other software packages. For example,
image analysis algorithms implemented in Python can
be readily tested for validity and usability prior to be-
ing ported to C++ for integration into a package like
the USGS ISIS3 [4] or IDL for ENVI.

Science Team Support. Python is pre-installed or
deployable using either apt-get or binaries on all mod-
ern platforms. Installation of multiple additional mod-
ules can be challenging, but is simplified by the use of
EPD (Enthought Python Distribution). EPD is free for
academic users and provides an all-in-one deployment
that includes all of the modules described above. End-
user support using EPD requires only a simple binary
installation for all platforms and the briefest introduc-
tion to the command line. Alternatively, Python code
can be wrapped into a Windows executable or OSX ap-
plication and shipped with dependencies included.

Python is Ideal for Scientists: Beyond rapid de-
velopment and associated lower costs, Python provides
an interactive environment for data exploration, ana-
lysis, and visualization. For example, IPython allows
for 'open, collaborative, reproducible scientific com-
puting' through the use of interactive visualization, a
web notebook to store 'code, text, mathematical ex-
pressions, inline plots' and '[e]asy to use, high perform-
ance tools for parallel computing' [5].

Image Analysis: PyStretch is a processing and ana-
lysis tool built entirely in Python. At its core, PyStretch
provides a means to manipulate images larger than
available system memory (e.g., 4 GB) while maintain-
ing essential geospatial data properties such as projec-
tion, cell size, and image coordinate system [6, 7]. To
perform this processing, images are first ingested using
GDAL and converted to arrays. Each array is then seg-
mented twice, first into subsections that fit into the sys-
tem’s available memory (GB of RAM), and then again
into smaller chunks in preparation for multiprocessing.
This transformation from on-disk geospatial image to
an array stored in RAM occurs completely in shared
memory space and does not require any image duplica-
tion. The implications are that processing times are re-
duced substantially as disk I/O is slower than in-
memory processing. Once distributed, image subsec-
tions are processed using a variety of included al-

2226.pdf44th Lunar and Planetary Science Conference (2013)

gorithms (e.g., linear and non-linear stretches or filters)
and written to disk. In addition to pixel manipulation,
data products can be scaled, reformatted, and altered in
data type (e.g., 32-bit to 16-bit).

PyStretch has been tested internally on a dual-core,
4GB RAM, MacBook Pro processing a 522MB 8-Bit
GeoTiff image in 0:15 seconds, a 1GB 32-bit GeoTiff
in 1:02 minutes, and an 8.88GB Compressed GeoTiff
(16.99GB uncompressed) in 12:13 minutes. These
times are expected to improve substantially with the
next rollout of PyStretch. This use case example high-
lights the ability for Python to leverage outside librar-
ies to perform planetary data analysis, the use of mul-
ti-core processing to facilitate analysis of large data
sets, and the ability to perform complex computation
at speeds comparable to compiled software solutions.

HyperSpectral Image Analysis: The science team
of the Mars Reconnaissance Orbiter (MRO) CRISM
hyperspectral instrument has published more than 40
algorithms to create derived spectral parameter
products [e.g., 8]. Many of these are sufficiently com-
plex that a command-line implementation is most suit-
able. Others are ideal for interactive data exploration.
For example, ICER2 is a simple band ratio of the
CRISM 2350µm band and the 2600µm band to high-
light CO2 ice on the Mars surface. Although the
CRISM team uses Exelis' ENVI application, the open-
source IPython suite provides a simple, cost-effective
solution for deriving these CRISM spectral data
products.

IPython offers an interactive Python shell and an
integrated command line shell, so one can access a text
editor (vim, nano), GDAL command line tools, and all
available Python modules. To perform the ICER2 band
ratio, users can simply download their desired image,
determine the band numbers that represent 2350µm
and 2600µm using the appropriate wavelength.tab
lookup table, read each band as a NumPy array, derive
the ratio using standard mathematical notation
(Array_1/Array_2), and write the output to disk using
GDAL's Python bindings. A user needing only to visu-
alize the results could plot the data using MatPlotLib
without having to write the results to disk. This use
case example highlights the suitability of Python to op-
erate as an interactive data analysis environment that
provides usage familiar to scientists in an open-source
package.

Eruption Modeling and Simulation: Python also
provides a tool for interactively modeling and visualiz-
ing geologic processes such as volcanic eruptions. For
example, the simple ballistic eruption model for em-
placement of the Orientale annular pyroclastic eruption
[9] can be modeled and viewed using Python in 3D
[e.g., 10] as pyroclasts are emplaced randomly from

the observed fissure vent onto a flat-surface mosaic
and then an elevation model of the lunar surface [11,
12]. First, a basic model ejecting particulates from a
single point onto a planar, Equirectangular projected,
surface was coded and tested. Users define ejection
angle and velocity ranges along with the number of se-
quentially ejected points. Existing Python libraries
(MatplotLib, Basemap, & NumPy) were used to rap-
idly prototype a geospatial visualization that depicts
point particulate landing sites. A second iteration of the
code introduced a linear ejection feature, randomly se-
lecting a potential ejection point, as well as topograph-
ic impact checking, using GDAL to extract a topo-
graphic profile from the WAC DTM. This iteration
also included a point-density visualization, with user
definable grid size. A final iteration provided the
means to write the model output to a shapefile, with
each point tagged with a temporal identifier, using
either a single core, or all available cores (multipro-
cessing). This allows for rapid 3D visualization of hun-
dreds of thousands of particulate depositions. The abil-
ity for the science team to interactively test low num-
bers of particulate deposition over the WAC basemap
mosaic, iteratively test ejection angle and velocity
combinations, and finally run large scale models output
as a shapefile was particularly beneficial. This use
case example highlights the potential to iteratively
design and develop interactive visualizations for the
exploration of planetary surface processes through the
integration of existing, tested, Python libraries as well
as the potential to develop low overhead visualizations
that promote an integrated, single application, science
workflow.

Conclusion: Python offers a development and data
analysis platform ideal for scientific analysis of planet-
ary data. The potential unique nature of planetary data
is not insurmountable and three usage examples
provide an overview of the potential benefits achiev-
able using Python.

References: [1] van Rossum (2001), Style Guide
for Python Code, http://www.python.org/dev/peps/pep-
0008/. [2] Hare et al. (2008), LPS XXXIX, abs. 2536.
[3] van Rossum (2012), Interview, see
http://tinyurl.com/7jl3jev. [4] Anderson et al. (2004),
LPSC XXXV, abs. 2039. [5] Pérez and Granger
(2007), Comp. Sci. Engin., v9, pp. 21-29.
[6] http://pypi.python.org/pypi/PyStretch/. [7] Laura
(2012), NASA Workshop for Data Users and De-
velopers, June 2012. [8] Pelkey et al. (2007), JGR Vol.
112. [9] Head et. al. (2002), JGR Vol. 107. [10] Gaddis
et al., this volume. [11] Speyerer et al. (2011), LPS 42,
#2387. [12] Scholten et al. (2012), JGR, v. 117, E3,
DOI: 10.1029/2011JE003926.

2226.pdf44th Lunar and Planetary Science Conference (2013)

http://tinyurl.com/7jl3jev%20%5B4

